Priatelia

Niekoľkí priatelia mali zozbierať sumu 72 Eur rovnakým dielom. Ak by traja odmietli svoju časť, ostatní by museli dať každý o 4 eur viac. Koľko bolo priateľov?

Výsledok

n =  9

Riešenie:

n=1 e=72(n-3).(e+4)=-152
n=2 e=36(n-3).(e+4)=-40
n=3 e=24(n-3).(e+4)=0
n=4 e=18(n-3).(e+4)=22
n=5 e=14.4(n-3).(e+4)=36.8
n=6 e=12(n-3).(e+4)=48
n=7 e=10.2857142857(n-3).(e+4)=57.1428571429
n=8 e=9(n-3).(e+4)=65
n=9 ****e=8(n-3).(e+4)=72
n=10 e=7.2(n-3).(e+4)=78.4
n=11 e=6.54545454545(n-3).(e+4)=84.3636363636
n=12 e=6(n-3).(e+4)=90
n=13 e=5.53846153846(n-3).(e+4)=95.3846153846
n=14 e=5.14285714286(n-3).(e+4)=100.571428571
n=15 e=4.8(n-3).(e+4)=105.6
n=16 e=4.5(n-3).(e+4)=110.5
n=17 e=4.23529411765(n-3).(e+4)=115.294117647
n=18 e=4(n-3).(e+4)=120
n=19 e=3.78947368421(n-3).(e+4)=124.631578947
n=20 e=3.6(n-3).(e+4)=129.2
n=21 e=3.42857142857(n-3).(e+4)=133.714285714
n=22 e=3.27272727273(n-3).(e+4)=138.181818182
n=23 e=3.13043478261(n-3).(e+4)=142.608695652
n=24 e=3(n-3).(e+4)=147
n=25 e=2.88(n-3).(e+4)=151.36
n=26 e=2.76923076923(n-3).(e+4)=155.692307692
n=27 e=2.66666666667(n-3).(e+4)=160
n=28 e=2.57142857143(n-3).(e+4)=164.285714286
n=29 e=2.48275862069(n-3).(e+4)=168.551724138
n=30 e=2.4(n-3).(e+4)=172.8
n=31 e=2.32258064516(n-3).(e+4)=177.032258065
n=32 e=2.25(n-3).(e+4)=181.25
n=33 e=2.18181818182(n-3).(e+4)=185.454545455
n=34 e=2.11764705882(n-3).(e+4)=189.647058824
n=35 e=2.05714285714(n-3).(e+4)=193.828571429
n=36 e=2(n-3).(e+4)=198
n=37 e=1.94594594595(n-3).(e+4)=202.162162162
n=38 e=1.89473684211(n-3).(e+4)=206.315789474
n=39 e=1.84615384615(n-3).(e+4)=210.461538462
n=40 e=1.8(n-3).(e+4)=214.6
n=41 e=1.75609756098(n-3).(e+4)=218.731707317
n=42 e=1.71428571429(n-3).(e+4)=222.857142857
n=43 e=1.67441860465(n-3).(e+4)=226.976744186
n=44 e=1.63636363636(n-3).(e+4)=231.090909091
n=45 e=1.6(n-3).(e+4)=235.2
n=46 e=1.5652173913(n-3).(e+4)=239.304347826
n=47 e=1.53191489362(n-3).(e+4)=243.404255319
n=48 e=1.5(n-3).(e+4)=247.5
n=49 e=1.4693877551(n-3).(e+4)=251.591836735
n=50 e=1.44(n-3).(e+4)=255.68
n=51 e=1.41176470588(n-3).(e+4)=259.764705882
n=52 e=1.38461538462(n-3).(e+4)=263.846153846
n=53 e=1.35849056604(n-3).(e+4)=267.924528302
n=54 e=1.33333333333(n-3).(e+4)=272
n=55 e=1.30909090909(n-3).(e+4)=276.072727273
n=56 e=1.28571428571(n-3).(e+4)=280.142857143
n=57 e=1.26315789474(n-3).(e+4)=284.210526316
n=58 e=1.24137931034(n-3).(e+4)=288.275862069
n=59 e=1.22033898305(n-3).(e+4)=292.338983051
n=60 e=1.2(n-3).(e+4)=296.4
n=61 e=1.18032786885(n-3).(e+4)=300.459016393
n=62 e=1.16129032258(n-3).(e+4)=304.516129032
n=63 e=1.14285714286(n-3).(e+4)=308.571428571
n=64 e=1.125(n-3).(e+4)=312.625
n=65 e=1.10769230769(n-3).(e+4)=316.676923077
n=66 e=1.09090909091(n-3).(e+4)=320.727272727
n=67 e=1.07462686567(n-3).(e+4)=324.776119403
n=68 e=1.05882352941(n-3).(e+4)=328.823529412
n=69 e=1.04347826087(n-3).(e+4)=332.869565217
n=70 e=1.02857142857(n-3).(e+4)=336.914285714
n=71 e=1.01408450704(n-3).(e+4)=340.957746479

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Hľadáte pomoc s výpočtom koreňov kvadratickej rovnice? Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu? Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?

Ďaľšie podobné príklady:

  1. Vyriešte
    oriesky_2 Vyriešte sústavu dvoch rovníc s dvoma neznámymi x a y : 3x - 4y =12 -x + 3y =1 Súčet x + y sa bude rovnať?
  2. Úspory
    penize_29 Pavol má o polovicu väčšie úspory než Stano, ale rovnaké úspory ako Radek. Stano usporil o 120 Sk menej ako Radek. Aké úspory majú 3 chlapci dohromady?
  3. Rozdiel dvoch čísel
    squares2_6 Rozdiel dvoch čísel je 20. Sú to celé kladné čísla vačšie ako nula. Prvé číslo umocnené na jednu polovicu sa rovná druhému číslu. Určte obe čísla.
  4. Štyri čísla
    equations Nájdite také štyri čísla, ktorých súčet je 48 a ktoré majú tieto vlastnosti: ked od prvého odčítame 3, k druhému pripočítame 3, tretie vynásobíme tromi a štvrté vydelíme tromi, dostaneme rovnaký výsledok.
  5. Kvadratická - len dosadiť
    kvadrat_2 Určte koreň kvadratickej rovnice: 3x2-4x+(-4)=0.
  6. Eliminačná metóda
    rovnice_1 Riešte sústavu lineárnych rovníc eliminačnou metódou: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  7. Muži, ženy a deti
    regiojet V autobuse išli na výlet muži, ženy a deti v pomere 2:3:5. Deti platili 60 korún, dospelí 150. Koľko bolo v autobuse žien, ak bolo za autobus zaplatených 4200 korún?
  8. Delenie eúr
    money_12 270 Eur si chlapci rozdelili tak, že Peter dostal trikrát viac ako Pavol a Ivan dostal o 120 Eur viac ako než Pavol. Koľko dostal každý?
  9. Darčeky
    penize_14 Katka išla kupovať darčeky pre svoje 3 kamarátky. Za darček pre Kristínku zaplatila 1/4 zo svojich úspor. Za polovicu zo zvyšných peňazí kúpila darček Miške. Za darček pre Martu zaplatila 8€. Koľko stáli všetky darčeky pre Katkine kamarátky spolu? A koľko.
  10. Šťastné číslo
    numbers_43 Filip vynásobil číslo 4 dvakrát po sebe svojím šťastným číslom. K výsledku ešte pripočítal 4 a dostal výsledok 200. Ktoré je Filipovo šťastné číslo?
  11. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  12. Sčítance 7
    eq2_7 Vypocitaj väčšieho z dvoch scitancou ak vieš, že menší sčítanie je tretinou väčšieho a ich súčet je 48
  13. Záhrada
    stromy V ovocnej záhrade bolo jabloní o 46 viac ako hrušiek. Búrka vyvrátila štvrtinu jabloní a 7 hrušiek;ostalo však ešte 80 stromov. Koľko jabloní a koľko hrušiek bolo v záhrade?
  14. Loptová hra
    lopta_3 Richard, Denis a Denisa strelili spolu 932 braniek. Denis strelil o 4 bránky viacej ako Denisa, ale Denis strelil o 24 braniek menej ako Richard. Určte počet braniek u každého hráča.
  15. Čokolády 3
    cokolada_4 Marek chcel kúpiť 4 čokolády, ale chýbalo mu 30 centov. Kúpil si teda tri čokolády a žuvačku za dvadsať centov a ešte mu 70 centov ostalo. Koľko stála čokoláda ? Koľko mal Marek eur ?
  16. Korene
    parabola Určite v kvadratickej rovnici absolútny člen q tak, aby rovnica mala reálny dvojnásobný koreň a tento koreň x vypočítajte: ?
  17. 255 študentov
    fr_1 255 študentov istej strednej školy ovláda okrem anglického jazyka jeden ďalší jazyk. Nemecký jazyk ovláda o 23 žiakov viac než ruský jazyk. Francúzsky jazyk ovláda o 37 žiakov menej než nemecký jazyk. Koľko žiakov ovláda nemecký jazyk?