Betka

Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu.
Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a skladalo sa iba z cifier mysleného čísla (avšak nemuselo obsahovať všetky jeho cifry). Erike sa Betkino číslo zapáčilo a chcela nájsť iné číslo s rovnakými vlastnosťami. Zistila, že neexistuje menšie také číslo ako
Betkino a väčšie sa jej hľadať nechcelo. Určte, aké číslo si myslela Betka a aké číslo by mohla nájsť Erika, keby mala viac trpezlivosti.

Výsledok

b =  1032
e =  2301

Riešenie:

Textové riešenie b =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 1 komentár:
#1
Peter2
Nápoveda. Zvážte postupne možnosti, kedy je myslené číslo jednomiestne, dvojmiestne atď. V jednotlivých prípadoch premýšľajte postupne nad možnými súčty na mieste jednotiek, desiatok atď.

Možné riešenie. Najprv nájdeme Betkine  číslo, tj. najmenšie číslo s uvedenými vlastnosťami.
1) Predpokladajme, že Betkine číslo je jednomiestne, a označíme si ich a. Potom by podľa zadania muselo platiť a + a = a, čo platí len v prípade a = 0. Nula však nie je prirodzené číslo, takže Betkine myslenej číslo nemôže byť jednomiestne.
2) Predpokladajme, že Betkine číslo je dvojmiestne, a označíme si ich ab. Či už súčet ab + ba dopadne akokoľvek, na mieste jednotiek čítame buď b + a = a, alebo b + a = b. Odtiaľ dostávame buď b = 0, alebo a = 0. V takom prípade by však buď číslo ba, alebo číslo ab nebolo dvojciferné. Betkine myslené číslo teda nemôže byť dvojmiestne.
3) Predpokladajme, že Betkine číslo je trojmiestne, a označíme si ich abc. Z rovnakého dôvodu ako vyššie nemôžu byť čísla aac nuly, teda v súčte abc + cba sa na mieste jednotiek môže objaviť jedine b:
a b c
c b a
____
* * b
Súčasne c + a nemôže byť väčšia ako 9, pretože potom by celkový súčet abc + cba nebol trojmiestny. Odtiaľ sa dozvedáme, že a + c = b čo okrem iného znamená, že ani číslica b nemôže byť 0. Odtiaľ vyplýva, že súčet b + b na mieste desiatok nemôže byť menšia ako 10; v takom prípade by tento súčet bol rovný jednému z čísel a, b, c, čo vždy vedie k nejakému sporu s predchádzajúcimi poznatkami:
Ak b + b = a alebo b + b = c, potom podľa (1) dostávame 2a + 2c = a alebo 2a + 2c = c, teda a = -2C alebo c = -2a, čo nie je možné.
• Ak b + b = b, potom b = 0, čo nie je možné.
Súčet b + b na mieste desiatok však nemôže byť ani väčšia než 9. V takom prípade by súčet na mieste stoviek bol a + c + 1 a toto číslo má byť presne jednému z čísel a, b, c; to vždy vedie k nejakému sporu:
• Ak a + c + 1 = a alebo a + c + 1 = c, potom c = -1 alebo a = -1, čo nie je možné.
• Ak a + c + 1 = b, potom podľa (1) dostávame b + 1 = b, teda 1 = 0, čo nie je možné.
Betkine myslené číslo teda nemôže byť ani trojmiestne.
4) Predpokladajme, že Betkine číslo je štvormiestne, a označíme si ich abcd. Z rovnakého dôvodu ako vyššie nemôžu byť čísla aad nuly, teda v súčte abcd + dcba sa na mieste jednotiek môže objaviť buď b, alebo c:
a b c d
d c b a
----------
* * * b

a b c d
d c b a
----------
* * * c
Súčasne d + a nemôže byť väčšia ako 9, pretože potom by celkový súčet abcd + DCBA nebol štvormiestny. Odtiaľ sa dozvedáme, že
buď a + d = b, (dalej len 2)
alebo a + d = c. (dalej len 3)
To okrem iného znamená, že buď b <> 0, alebo c <> 0.
Teraz predpokladáme, že súčet c + b na mieste desiatok je menšia ako 10, tzn. tento súčet je rovný jednému z čísel a, b, c, d, a preskúmame jednotlivé prípady. Najprv uvažujme platnosť (2), a teda b <> 0:
• Ak b + c = a alebo b + c = d, potom podľa (2) dostávame a + d + c = a alebo a + d + c = d, teda c = -d alebo c = -a, čo nie je možné .
• Ak b + c = b, potom c = 0 (čo ničomu nevadí).
• Ak b + c = c, potom b = 0, čo nie je možné.
Podobne, za predpokladu (3) zistíme, že jediná prípustná možnosť je b + c = c, teda b = 0
Celkom tak objavujeme dva možné prípady:
a b 0 d
d 0 b a
----------
b b b b
a 0 c d
d c 0 a
----------
c c c c
Pretože Betkine číslo je najmenšie číslo vyhovujúce všetkým uvedeným podmienkam, vôbec sa nemusíme zaoberať prípadom, kedy súčet c + b je väčší ako 9, a sústredíme sa výhradne na druhú z vyššie menovaných možností, tj. B = 0. Dosadíme najmenšie možné číslo na miesto tisícok a = 1 a zisťujeme, že c = d + 1. Najmenší vyhovujúce možnosť je d = 2 ac = 3. Betka si teda hrala s číslom 1032 a jej výpočet vyzeral takto:
1 0 3 2
2 3 0 1
----------
3 3 3 3
Z vyššie uvedeného je teraz jednoduché doplniť nejaké iné číslo s uvedenými vlastnosťami, teda nejaké Eričino číslo. Napr. stačí v Bětčině čísle zameniť číslica na mieste jednotiek a tisícoviek alebo číslice na mieste desiatok a stoviek, príp. uvažovať akékoľvek čísla tvaru (4). Medzi možnými riešeniami sú tiež čísla, kedy súčet c + b je väčšia než 9. Tu je niekoľko riešení, na ktoré mohla Erika prísť, keby nebola však tak netrpezlivá:
1 0 4 3
3 4 0 1
----------
4 4 4 4
1 3 0 2
2 0 3 1
----------
3 3 3 3
1 8 9 7
7 9 8 1
----------
9 8 7 8
Poznámky. a) Ak vieme zdôvodniť, že hľadané Betkine číslo musí byť aspoň štvormiestne, potom je možné ľahko nájsť skúšaním:
Najmenšie štvormiestne číslo s navzájom rôznymi číslicami je 1023. Toto číslo však nie je riešením, pretože 1023 + 3201 = 4224. Ak nás napadne prehodiť číslica 2 a 3, dostaneme vyhovujúce riešenie: 1032 + 2301 = 3333. Aby sme sa presvedčili, že toto riešenie je najmenšie možné, stačí overiť, že žiadne číslo medzi 1023 a 1032 nevyhovuje niektoré z uvedených podmienok.
b) Nahradenie ostatných úvah skúšaním je tiež možné, avšak často veľmi prácné. Avšak ak je riešenie založené na skúšaní úplné, nech je považované za správne.
Akékoľvek čiastkové všeobecné postrehy môžu počet možností k preskúšaniu zaujímavo znižovať (napr. Počet trojíc rôznych čísiel od 1 do 9 vyhovujúcich rovnosti (1) určite nie je väčší ako 32.

avatar









Ďaľšie podobné príklady:

  1. Čísla
    ten Určite počet všetkých prirodzených čísel menších ako 4183444, ak každé je súčasne deliteľné 29, 7, 17. Aký je ich súčet?
  2. Opica
    monkey Do studne hlbokej 23 metrov spadla opica. Každý deň sa jej darí vyškriabať sa 3 metre, v noci však spadne späť o 2 metre. Na ktorý deň sa dostane opica zo studne?
  3. Úsečky
    segments Úsečky dĺžok 67 cm a 3.1 dm máme rozdeliť na rovnaké diely tak, aby ich dĺžka v centimetroch bola vyjadrená celým číslom. Koľkými spôsobmi ich môžeme deliť?
  4. Štvorcová sieť
    sit Štvorcová sieť sa skladá zo štvorca so stranou dĺžky 1cm. Narysujte do nej aspoň tri rôzne obrazce také, aby každý mal obsah 6 cm2 a obvod 12cm a aby ich strany splývali s priamkami siete.
  5. Vystrihol som obdĺžniky
    rectangles2_2 Vystrihol som si dva obdĺžniky s obsahmi 54 cm², 90 cm². Ich strany sú vyjadrene celými číslami v centimetroch. Ak tieto obdĺžniky priložím k sebe, dostanem obdĺžnik s obsahom 144 cm². Aké rozmery môže mat tento veľký obdĺžnik? Napíš všetky možnosti. Svoj.
  6. Krkavci
    krkavec V rozprávke o sedem krkavcov bolo sedem bratov, z ktorých každý o sebe narodil presne o 2.5 roka po predchádzajúcom. Ked najstarší z bratov bol práve 2-krát starším ako najmladší, matka všetkých zakliala. Koľko rokov bolo sedem bratom krkavcom, keď ich ma
  7. Prémia
    moeny Hrubá mzda zamestnanca bola 946 EUR vrátane 29% prémie. Koľko EUR boli prémie?
  8. Obdĺžnik
    rectangle_inscribed_circle Obdĺžnik je 25 cm dlhý a 34 cm široký. Urči polomer kružnice opísanej obdĺžniku.
  9. Z5–I–1 MO 2017
    rohliky_2 Janko dostal vreckové a chce si zaň kúpiť niečo dobré. Keby si kúpil štyri koláče, zvýšilo by mu 0,50 €. Keby si chcel kúpiť päť koláčov, chýbalo by mu 0,60 €. Keby si kúpil dva koláče a tri šišky, utratil by celé vreckové bezo zvyšku. Koľko stojí jedna ši
  10. Tri krúžky v škole
    venn 27 žiakov navštevuje nejaký krúžok, tanečný krúžok navštevuje 14 žiakov, športový 21 žiakov a dramatický 16 žiakov. Tanečný a športový navštevuje 9 žiakov, tanečný a dramatický 6 žiakov, športový a dramatický 11 žiakov. Koľko žiakov navštevuje všetky 3 krú
  11. Platba
    img-thing Peter zaplatil v obchode o 3 eura viac, ako je polovica sumy, ktorú mal pri príchode do obchodu. Pri odchode mu zostalo 10 eur. Koľko eur mal pri príchode do obchodu?
  12. Prevod
    ozubene_kolesa Dve ozubené kolesá, zapadajúce do seba, majú prevod 2:3. Stredy odidvoch kolies sú od seba vzdialené 82 cm. Aké polomery majú kolesá?
  13. Lentilka
    lentilky.JPG Lentilka urobila 31 palaciniek. 8 nenaplnila ničím, 14 palaciniek naplnila jahodovym džemom, 16 naplnila tvarohom. a) Koľko urobila Lentilka jahodovo-tvarohových palaciniek? Maksík zjedol 4 jahodovo-tvarohové a všetky čisto jahodové palacinky. Mikulaš zj
  14. Centy
    cents_1 Julka ma o 3 centy viac ako Hugo. Spolu maju 27 centov. Koľko centov má Julka a koľko Hugo?
  15. Králici
    kralici V králikárni je 48 strakatých králikov. Hnedých je o 23 menej ako strakatých a bielych je 8-krát menej než strakatých. Koľko je v králikárni králikov?
  16. Maliny
    maliny Urči, koľko malín je v treťom a v desiatom košíku, ak v prvom sú 3 maliny a v každom ďalšom je o 8 malín viac
  17. Tri mačky
    three_cats Ak tri mačky zožerú tri myši v priebehu troch minút, za aký čas 170 mačiek zožerie 170 myší?