Utierky

Mamička vyprala štvorcové utierky a vešia je vedľa seba na šnúru natiahnutú medzi dvoma stromami. Použila šnúru s dĺžkou 7,5 metra, pričom na uviazanie okolo kmeňa potrebovala na každej strane 8 dm. Všetky utierky majú šírku 45 cm. Medzi krajné utierky a kmeňom mamička necháva medzeru aspoň 10 cm, utierky sa jej neprekrývajú a nemá ich zložené ani preložené. Koľko najviac utierok môže takto zavesiť na natiahnutú šnúru?

Výsledok

n =  12

Riešenie:

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 1 komentár:
#1
Peter5
Nápoveda. Najprv zistite, koľko šnúry môže byť využité k vlastnému vešanie utierok.

Ďalšie možné riešenie.

Všetky rozmery budeme vyjadrovať v rovnakých jednotkách - a to v dm. Dĺžka napnutej šnúry medzi stromami je rovná 75 - 2 · 8 = 59 (dm). Z každej strany má navyše zostať voľný 1 dm. K vlastnému vešaniu teda môže byť použité 59 - 2 · 1 = 57 (dm). Každá utierka je široká 4,5 dm, jedna dvojica utierok teda zaberá najmenej 9 dm. Šesť dvojíc utierok zaberá najmenej 54 dm, v takom prípade zostane najviac 3 dm šnúry (57 = 6 · 9 + 3). Do tohto priestoru sa už žiadna ďalšia utierka nezmestí. Na šnúru možno uvedeným spôsobom zavesiť najviac 12 utierok.

avatar









Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Ďaľšie podobné príklady:

  1. Pán Cuketa
    cuketa Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n ak
  2. Z7–I–6, výstava mačiek
    stoly Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka.
  3. Obdĺžnik - kto má pravdu
    mo_1 Obdĺžnik je rozdelený na 7 políčok. Na každé políčko sa má napísať práve jedno z čísel 1, 2 a 3. Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto.
  4. Štvorcová sieť
    sit Štvorcová sieť sa skladá zo štvorca so stranou dĺžky 1cm. Narysujte do nej aspoň tri rôzne obrazce také, aby každý mal obsah 6 cm2 a obvod 12cm a aby ich strany splývali s priamkami siete.
  5. Číselná os
    osa V kocúrskovskej škole používajú zvláštne číselnú os. Vzdialenosť medzi číslami 1 a 2 je 1 cm, vzdialenosť medzi číslami 2 a 3 je 3 cm, medzi číslami 3 a 4 je 5 cm, a tak ďalej, vzdialenosť medzi nasledujúce dvojicou prirodzenými číslami sa vždy zväčší o 2.
  6. Klávesy
    klavesy Miško mal na poličke malé klávesy, ktoré vidíte na obrázku. Na bielych klávesoch boli vyznačené ich tóny. Klávesy našla malá Klára. Keď ich brala z poličky, vypadli jej z ruky a všetky biele klávesy sa z nich vysypali. Aby sa brat nehneval, začala je Klára
  7. Roboti Z7
    1-robot V škole pre robotov do jednej triedy chodí dvadsať robotov Robertov, ktorí sú očíslovaní Robert 1 až Robert 20. V triede je práve napätá atmosféra, rozprávajú sa spolu iba niektorí roboti. Roboti s nepárnym číslom sa nerozprávajú s robotmi s párnym číslom.
  8. Archeológovia
    flags Archeológovia zistili, že vlajka bájneho matematického kráľovstva bola rozdelená na šesť políčok, tak ako na obrázku. V skutočnosti bola vlajka trojfarebná a každé políčko bolo vyfarbené jednou farbou. Vedci už vybádali, že na vlajke bola použitá červená,.
  9. Šesťuholník nepravidelný
    6uholnik_nepravidelny Na obrázku je štvorec ABCD, štvorec EFGD a obdĺžnik HIJD. Body J a G ležia na strane CD, pričom platí |DJ| < |DG| a body H a E ležia na strane DA, pričom platí /DH/ < /DE/. Ďalej vieme, že /DJ/ = /GC/. Šesťuholník ABCGFE má obvod 96 cm, šesťuholník EFGJ
  10. Myška Hryzka
    myska_hryzka Myška Hryzka našla 27 rovnakých kociek syra. Najskôr si z nich poskladala veľkú kocku a chvíľu počkala, než sa syrové kocôčky k sebe prilepili. Potom z každej steny veľkej kocky vyhryzie strednú kocôčku. Potom zjedla aj kocôčky, ktorá bola v stredu veľkej.
  11. Stonožka
    mnohonozky.JPG Stonožka Mirka pozostáva z hlavy a niekoľkých článkov, na každom článku má jeden pár nôh. Keď sa ochladilo, rozhodla sa, že sa oblečie. preto si na treťom článku od konca a potom na každom ďalšom treťom článku obliekla ponožku na ľavú nôžku. Podobne si na.
  12. Vláčik
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakom. Vlak mal tri vagóny a v každom sa viezla práve tri čísla. Číslo 1 sa viezlo v prvom vagóne a v poslednom vagóne boli všetky čísla nepárne. Sprievodcovia cestou spočítal súčet čísel v prvom, druhom i posledným vag
  13. Starý hodinár
    clock-night-schr Starý hodinár má vo svojej zbierke zvláštny digitálny budík, ktorý zvoní vždy, keď súčet cifier, ktorý budík ukazuje, sa rovná číslu 21. Zisti, v ktorých časoch bude budík zvoniť. Aký je ich počet? Vypíš všetky možnosti...
  14. Z7-I-4 hviezdičky 4949
    hviezdicky_mo Napíšte namiesto hviezdičiek, aby nasledujúci zápis súčinu dvoch čísel bol platný: ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 9 4 9 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗ ∗
  15. Štedrý deň
    stedryd V nepriestupnom roku bolo 53 nedieľ. Na aký deň týždňa pripadol Štedrý deň?
  16. Rovnoramenný - Z7–I–5
    triangles_12 Je daný trojuholník ABC so stranami /AB/ = 3 cm, /BC/ = 10 cm a uhlom ABC = 120°. Narysujte všetky body X tak, aby platilo, že trojuholník BCX je rovnoramenný a súčasne trojuholník ABX je rovnoramenný so základňou AB.
  17. Bicykle
    cyclist_11 Si majiteľ dopravného ihriska. Kúp bicykle dvoch farieb ľubovoľného počtu, ale musíš minúť presne 120000Kč. Modrý bicykel stojí 3600Kč a červený bicykel stojí 3200Kč.