Mo - kružnice

Juro zostrojil štvorec ABCD so stranou 12 cm. Do tohto štvorca narysoval štvrťkružnicu k, ktorá mala stred v bode B a prechádzala bodom A, a polkružnicu l, ktorá mala stred v strede strany BC a prechádzala bodom B. Rád by ešte zostrojil kružnicu, ktorá by ležala vnútri štvorca a dotýkala sa štvrťkružnice k, polkružnice l aj strany AB. Určte polomer takej kružnice.

Výsledok

r =  3 cm

Riešenie:

Textové riešenie r =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 3 komentáre:
#
Ziak
Môžete prosim vás napísať riešenie ? :)

#
Mo-radce
Nápoveda. Premýšľajte, ako by ste pomocou polomeru hľadané kružnice vyjadrili vzdialenosť jej stredu od úsečky AB, príp. BC.

Možné riešenie. Počas riešenia sa odkazujeme na obrázok, v ktorom O značí stred strany BC, S značí stred Jurkovej vytúženej kružnice h, K značí dotykový bod kružníc h a k, L značí dotykový bod kružníc hala M značí dotykový bod kružnice ha úsečky AB. Ďalej budeme odkazovať na pomocný bod E, ktorý je pätou kolmice z bodu S na stranu BC. Hľadaný polomer kružnice h v cm označíme r.

Vzdialenosť bodu S od úsečky AB je rovná r = |SM| = |EB|. Vzdialenosť bodu S od úsečky BC je rovná veľkosti úsečky SA, ktorá je odvesnou ako v pravouhlom trojuholníku SEO, tak v trojuholníku SEB. Všetky ostatné strany v oboch trojuholníkoch ľahko vyjadríme pomocou r; odtiaľ pomocou Pytagorovej vety budeme vedieť určiť neznámu r.
Body S a O sú stredy kružníc h a l, ktoré sa dotýkajú v bode L. Tieto tri body ležia na jednej priamke, vzdialenosť SO je preto rovná.
|SO| = |SL| + |LO| = R + 6
Obdobne, vzdialenosť SB je rovná
|SB| = |BK | - |KS| = 12 - r
pretože S a O sú stredy kružníc haka K je ich dotykovým bodom. Vzdialenosť OE je rovná:

|OE| = |OB| - |BE| = 6 - r

Odtiaľ az Pytagorovej vety v trojuholníkoch SEO a SEB dostávame:

|SE|² = |SO|² - |OE|² = |SB|² - |BE|²
(6 + r)² - (6 - r)² = (12 - r)² - r²
12r + 12r = 144 - 24r,
48r = 144,
r = 3.

Polomer hľadanej kružnice je 3 cm

#
Osoba
niečo jednoduchšie by nešlo?

avatar









Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.

Ďaľšie podobné príklady:

  1. Kosoštvorec
    rhomus_circle Je daný kosoštvorec o dĺžky strany a = 29 cm. Dotykový bod vpísanej kružnice delí jeho stranu na úseky a1 = 14 cm a a2 = 15 cm. Určite polomer r tejto kružnice a dĺžky uhlopriečok kosoštvorca.
  2. 30uholník
    30gon V pravidelnom 30 uholníku je polomer kružnice vpísanej 15cm. Zistite veľkosť hrany "a", polomer kružnice opísanej "R", obvod a obsah.
  3. Obdĺžnik
    rectangle_inscribed_circle Obdĺžnik je 36 cm dlhý a 21 cm široký. Urči polomer kružnice opísanej obdĺžniku.
  4. Medzikružie
    medzikrucie2 Štvorcu o strane a = 1 je vpísaná a opísaná kružnica. Určte obsah medzikružia.
  5. Štvrťkruh 4
    quarter_circle_1 Aký polomer má kruh vpisany do štvrťkruhu s polomerom 100 cm?
  6. Obsah kruhu
    described_circle2 Vypočítajte obsah kruhu, ktorý má rovnaký obvod ako je obvod obdĺžnika vpísanej kružnici s polomerom r 9 cm tak, že jeho strany sú v pomere 2 ku 7.
  7. Obdĺžnik
    diagonal V obdĺžniku so stranami 5 a 8 vyznačíme uhlopriečku. Aká je pravdepodobnosť, že náhodne zvolený bod vnútri obdĺžnika je bližšie k tejto uhlopriečke, ako k ľubovoľnej strane obdĺžnika?
  8. Odsek a oblúk
    odsek Vypočítaj plochu S odseku a dľžku kružnicového oblúka l . Výška odseku je 2 cm a uhol α=60°. Pomôcka: S=1/2 r2 . (β-sinβ)
  9. Kruhový bazén
    arc_open Podstava bazéna má tvar kruhu s polomerom r=10m okrem kruhového odseku, ktorý určuje tetiva dĺžky 10m. Jeho hĺbka je h=2m. Koľko hektolitrov vody sa zmesti do bazéna?
  10. Uhlopriečka štvorca
    square_d Vypočítajte dľžku uhlopriečky štvorca, ak jeho obvod je 136 cm.
  11. Záhrada
    garden_1 Rozloha štvorcovej záhrady tvorí 4/5 rozlohy záhrady tvaru trojuholníka so stranami 24 m 15 m a 15 m. Koľko metrov pletiva potrebujem na oplotenie štvorcovej záhrady?
  12. Lichobežník MO
    right_trapezium Je daný pravouhlý lichobežník ABCD s pravým uhlom pri bode B, |AC| = 12, |CD| = 8, uhlopriečky sú na seba kolmé. Vypočítajte obvod a obsah takéhoto lichobežníka.
  13. Lichobežník MO-5-Z8
    lichobeznik_mo_z8 Lichobežník ABCD je úsečkou CE rozdelený na trojuholník a rovnobežník, viď obrázok. Bod F je stredom úsečky CE, priamka DF prechádza stredom úsečky BE a obsah trojuholníka CDE je 3 cm2. Určte obsah lichobežníka ABCD.
  14. Štvoruholník
    quadrilateral Ukážte, že štvoruholník s vrcholmi P1 (0,1), P2 (4,2) P3 (3,6) P4 (-5,4) má dva pravé trojuholníky.
  15. Rovnobežník - uhlopriečky
    Parallelogram_1 Vypočítajte obsah rovnobežníka, ak sú veľkosti strán a=80, b=60 a veľkosť uhla zovretého uhlopriečkami je 60°.
  16. Trojuholník SUS
    triangle_iron Vypočítajte plochu a obvod trojuholníka, ak jeho dve strany sú dlhé 51 cm a 110 cm a uhol nimi zovretý je 130°.
  17. Kosoštvorec
    rhombus Vypočítajte obvod a obsah kosoštvorca, ktorého uhlopriečky sú dlhé 30 cm a 33 cm.