Pastevci

Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?

Vaša odpoveď:




Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 2 komentáre:
#1
Mo-radce
Nápoveda. Aké sú pomery existujúcich účtov jednotlivých druhov zvierat?

Možné riešenie.

Pomer medzi súčasným počtom kráv a koní je 60:45 = 4:3 a pomer medzi súčasným počtom oviec a koní je 60:35 = 12:7.
Počet koní teda musí byť nejakým násobkom čísla 3 a súčasne čísla 7, teda násobkom čísla 21.
Keby na lúke bolo 21 koní, potom by tam bolo 21 · 4: 3 = 28 kráv a 21 · 12: 7 = 36 oviec, celkom teda 21 + 28 + 36 = 85 zvierat. Keby na lúke bolo 42 koní, potom by všetky počty boli dvojnásobné, celkom teda 2 · 85 = 170 zvierat. Keby na lúke bolo 63 koní, potom by všetky počty boli trojnásobné, celkom teda 3 · 85 = 255 zvierat, čo je však viac ako 200.

Na lúke sa teda páslo buď 85, alebo 170 zvierat.

#2
Mo-radce
K rovnakému výsledku možno dôjsť aj rozkladom daných násobkov na súčiny prvočísel:
45 = 3 · 3 · 5, 60 = 2 · 2 · 3 · 5, 35 = 5 · 7.

Aby sa zodpovedajúce násobky počtov jednotlivých zvierat rovnali, musia byť v ich prvočíselných rozkladoch zastúpené všetky predchádzajúce prvočísla (vrátane ich násobnosť). Najmenší možný počet kráv teda je 2 · 2 · 7 = 28, koní 3 · 7 = 21 a oviec 2 · 2 · 3 · 3 = 36, celkom 28 + 21 + 36 = 85 zvierat.

avatar