Pastevci

Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?

Výsledok

x1 =  85
x2 =  170

Riešenie:

x = a+b+c < 200
b = 45/60 a
c = 45/35 a
a + 45/60 a + 45/35 a < 200
LCD(11, 4560, 4535) = LCM(1, 60, 35) = 22×3×5×7 = 420
11 = 420420
4560 = 315420
4535 = 540420


420 k + 315 k + 540 k < 84000
1275 k < 84000
17 k < 1120

x = 56+42+72 = 170
x = 28+21+36 = 85








Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 2 komentáre:
#1
Mo-radce
Nápoveda. Aké sú pomery existujúcich účtov jednotlivých druhov zvierat?

Možné riešenie.

Pomer medzi súčasným počtom kráv a koní je 60:45 = 4:3 a pomer medzi súčasným počtom oviec a koní je 60:35 = 12:7.
Počet koní teda musí byť nejakým násobkom čísla 3 a súčasne čísla 7, teda násobkom čísla 21.
Keby na lúke bolo 21 koní, potom by tam bolo 21 · 4: 3 = 28 kráv a 21 · 12: 7 = 36 oviec, celkom teda 21 + 28 + 36 = 85 zvierat. Keby na lúke bolo 42 koní, potom by všetky počty boli dvojnásobné, celkom teda 2 · 85 = 170 zvierat. Keby na lúke bolo 63 koní, potom by všetky počty boli trojnásobné, celkom teda 3 · 85 = 255 zvierat, čo je však viac ako 200.

Na lúke sa teda páslo buď 85, alebo 170 zvierat.

#2
Mo-radce
K rovnakému výsledku možno dôjsť aj rozkladom daných násobkov na súčiny prvočísel:
45 = 3 · 3 · 5, 60 = 2 · 2 · 3 · 5, 35 = 5 · 7.

Aby sa zodpovedajúce násobky počtov jednotlivých zvierat rovnali, musia byť v ich prvočíselných rozkladoch zastúpené všetky predchádzajúce prvočísla (vrátane ich násobnosť). Najmenší možný počet kráv teda je 2 · 2 · 7 = 28, koní 3 · 7 = 21 a oviec 2 · 2 · 3 · 3 = 36, celkom 28 + 21 + 36 = 85 zvierat.

avatar









Potrebujete pomôcť spočítať, vykrátiť či vynásobiť zlomky? Skúste našu zlomkovú kalkulačku. Chceš si vypočítať najmenší spoločný násobok dvoch alebo viacerých čísel?

Ďaľšie podobné príklady:

  1. Krajčírka 2
    krajcirka_1 Krajčírka kúpila dva druhy látok v celých metroch. Jednu po 50 Sk a druhú po 70 Sk. Koľko kúpila z každej látky, keď spolu platila 1540 Sk?
  2. Veky
    age_7 Keď bude Bedrichovi toľko rokov čo je Adamovi dnes, bude mať Adam 14 rokov. Keď bude Adamovi toľko rokov koľko má Bedrich dnes, bolo Bedrichovi dva roky. Koľko rokov je dnes Adamovi a Bedrichovi?
  3. Lode
    cargoship 1. Grécka loď odchádza o 6 a vezie kávu. 2. Prostredná loď ma čierny komin. 3. Anglická loď odchádza o deviatej. 4. Francúzska loď je vlavo o lodi vezucej kavu a ma modrý komín . 5. Vpravo od lodi vezúcej kakao je loď idúca do Marseille, 6. Brazilska lod i
  4. Koza 4
    bielakoza Slnko vychádza na východe od prístrešku a zapadá na západe. Koze by sa zišlo trochu tieňa, kde a aký druh stromu treba zasadiť , aby ho neobjedla?
  5. Futbalisti
    pizza_7 Do pizzerie prišlo 30 futbalistov. Práve prebiehala akcia na objednávku pizze: „Ak si objednáte 2 pizze, tretiu dostanete zadarmo“. Futbalisti si objednali toľko pízz, aby sa každému ušla 1 pizza. Za koko pízz zaplatili, ak využili podmienky akcie?
  6. Úžasné číslo
    numbers4 Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
  7. Včelár
    vcelar Starý otec je včelár a chce rozdeliť svojim trom vnukom med. Má sedem rovnakých nádob plných medu, sedem nádob naplnených do polovice a sedem prázdnych nádob. Ako má nádoby rozdeliť (bez prelievania) medzi vnukov, aby každý dostal rovnaký počet nádob aj ro
  8. Štyri triedy
    think Študenti všetkých 7, 8 a 9 tried v jednej škole môžu nastúpiť do štvorstupu, pětistupu, šestistupu aj sedmistupu a nikto nebude prebývať. Koľko žiakov je priemerne v jednej triede, ak sú v každom ročníku vždy štyri triedy?
  9. Pyramída Z8–I–6
    pyramida_mo Každá tehlička zobrazenej pyramídy obsahuje jedno číslo. Kedykoľvek to je možné, je číslo v každej tehličke najmenším spoločným násobkom čísel z dvoch tehličiek ležiacich priamo nad ňou. Ktoré číslo môže byť v najspodnejšej tehličke? Určite všetky možnosti
  10. Domček Z9–I–5
    Mysky Myšky si postavili podzemný domček pozostávajúci z komôrok a tunelkov: • každý tunel vedie z komôrky do komôrky (tzn. žiadny nie je slepý), • z každej komôrky vedú práve tri tunely do troch rôznych komôrok, • z každej komôrky sa dá tunelom dostať do ktore
  11. Neznáme číslo
    unknown Neznáme číslo je deliteľné práve tromi rôznymi prvočíslami. Keď tieto prvočísla porovnáme vzostupne, platí nasledujúce: • Rozdiel druhého a prvého prvočísla je polovicou rozdielu tretieho a druhého prvočísla. • Súčin rozdielu druhého a prvého prvočísla s r
  12. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  13. Modelky
    modelka Na mole sú tri modelky : slečna Ružová , Zelená a Modrá. Každá má na sebe jednofarebné šaty : ružové, zelené a modré. ,, Zvláštne, " skonštatovala slečna Modrá. ,,Voláme sa Ružová, Zelená a Modrá, naše šaty sú ružové , zelené a modré, al žiadna z nás nemá.
  14. Trieda
    skola_1 V triede je 36 žiakov, 2/3 tvoria dievčatá. Koľko je v triede dievčat a chlapcov?
  15. Trojciferné
    primes Napíšte najmenšie trojciferné číslo, ktoré pri delení 5 a 7 dáva zvyšok 2.
  16. Orechy
    nuts Koľko musíme mať najmenej orechov, aby sme mohli rovnakým dielom podeliť 10 detí, 11 detí alebo 19 detí a aby nám žiaden orech nezostal?
  17. Delitele
    divisors Súčet všetkých deliteľov istého nepárneho čísla je 2112. Určte, aký je súčet všetkých deliteĺov dvojnásobku tohto neznámeho čísla.