Číselná os

V kocúrskovskej škole používajú zvláštne číselnú os. Vzdialenosť medzi číslami 1 a 2 je 1 cm, vzdialenosť medzi číslami 2 a 3 je 3 cm, medzi číslami 3 a 4 je 5 cm, a tak ďalej, vzdialenosť medzi nasledujúce dvojicou prirodzenými číslami sa vždy zväčší o 2 cm.

Medzi ktorými dvoma prirodzenými číslami je na kocúrskovskej číselnej osi vzdialenosť 39 cm?

Nájdi všetky možnosti.

Výsledok

n =  2

Riešenie:

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 1 komentár:
#1
Mo-radca
Nápoveda. Vypíšte si vzdialenosti medzi rôznymi trojicami čísel na kocúrkovskej  osi.

Možné riešenie.
Vzdialenosť 39 cm môže byť realizovaná medzi rôznymi dvojicami čísel. Budeme systematicky vypisovať vzdialenosti medzi niekoľkými prvými číslami kocúrkovskej osi. V nasledujúcej schéme je nad čiarou vypísané prvých 10 čísiel a pod čiarou skutočnej vzdialenosti (v cm) medzi rôznymi dvojicami týchto čísel - na prvom riadku pod čiarou sú postupne vzdialenosti medzi susednými číslami, na druhom riadku pod čiarou sú vzdialenosti medzi dvojicami čísel, ktoré sú ob jedno, atď. (Napr. 21 na treťom riadku pod čiarou značí skutočnú vzdialenosť medzi číslami 3 a 6 na kocúrkovskej  osi a je určené ako 5 + 7 + 9). Hviezdičkou sú označené zbytočne veľké čísla, ktorá nás nezaujímajú.

1 2 3 4 5 6 7 8 9 10
1 3 5 7 9 11 13 15 17
4 8 12 16 20 24 28 32 36
9 15 21 27 33 39 * *
16 24 32 40 * * * *
25 35 45 * * * *
36 48 * * * * *
49 * * * * *

Ihneď vidíme (z tretieho riadku pod čiarou), že vzdialenosť 39 cm je medzi číslami 6 a 9 a že sa určite neobjavuje medzi číslami, ktoré sú na kocúrkovskej  osi viac ako ob dve (od štvrtého riadku pod čiarou). Vzdialenosť 39 cm sa určite tiež nemôže objavovať medzi číslami, ktoré sú ob jedno, pretože všetky tieto vzdialenosti sú párne (druhý riadok pod čiarou). Zostáva teda preskúmať vzdialenosti medzi susednými číslami (prvý riadok pod čiarou):
Postupnosť vzdialenosťou medzi susednými číslami môžeme vyjadriť ako
1, 3 = 1 + 2, 5 = 1 + 2 · 2, 7 = 1 + 2 · 3, 9 = 1 + 2 · 4,. . .
Všeobecne, vzdialenosť medzi i-tím a (i + 1) -ným číslom na kocúrkovskej  osi je rovná
1 + 2 (i - 1) = 2i - 1 (cm).
Táto vzdialenosť bude teda rovná 39 cm, práve keď i = 20. Vzdialenosť 39 cm na kocúrkovskej  číselnej osi je medzi dvojicami čísel 6, 9 a 20, 21.

Poznámky.

a) Záverečnou úvahy možno nahradiť vypísaním a spočítaním všetkých nepárnych čísel až po 39. Ak je výpočet úplný, je takéto riešenie správne.
b) Naopak úvodnej vypisovanie možno celé nahradiť úvahou, príp. výpočtom: Všetky vzdialenosti v tabuľke sú súčtom rôznych počtov nepárnych čísel, pričom tieto počty sú buď nepárne (pre susedné čísla a dvojica čísel, ktoré sú ob párny počet čísel), alebo párne (pre dvojice čísel, ktoré sú ob nepárny počet čísiel). Na jednotlivých riadkoch sa teda objavujú buď len nepárne, alebo iba párne čísla. Vzdialenosť 39 cm sa teda môže objavovať iba medzi susednými číslami a dvojicami, ktoré sú na kocúrkovskej  osi ob párny počet čísel.

Predchádzajúce vypisovanie postupnosti vzdialeností medzi susednými číslami má nasledujúce analógiu pre dvojice čísel, ktoré sú ob dve:
9, 15 = 9 + 6, 21 = 9 + 6 · 2, 27 = 9 + 6 · 3,. . .
Všeobecne, vzdialenosť medzi i-tím a (i + 3) -tým číslom na kocúrkovskej  osi je rovná 9 + 6 (i - 1) = 6i + 3 (cm).
Táto vzdialenosť bude teda rovná 39 cm, práve keď i = 6. Obdobne možno vyjadriť akúkoľvek inú vyššie vypisovanie postupnosť.
c) Riešenie úlohy možno zjednodušiť pomocou nasledujúceho poznatku: Súčet nepárneho počtu po sebe idúcich nepárnych čísel je rovný súčinu počtu týchto čísel a prostredného z nich. Zvedavým riešiteľom odporúčame tento poznatok zdôvodniť a riešenie domyslieť.
d) V uvedenej schéme si môžeme všimnúť, že všetky čísla v prvom šikmom stĺpci sú druhými mocninami prirodzených čísel. To nie je náhoda - všeobecne platí, že súčet prvých k po sebe idúcich nepárnych čísel je rovný k^2. Zvedavým riešiteľom odporúčame porovnať toto tvrdenie s poznatkom v predchádzajúcej poznámke.

avatar









Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Ďaľšie podobné príklady:

  1. Roboti Z7
    1-robot V škole pre robotov do jednej triedy chodí dvadsať robotov Robertov, ktorí sú očíslovaní Robert 1 až Robert 20. V triede je práve napätá atmosféra, rozprávajú sa spolu iba niektorí roboti. Roboti s nepárnym číslom sa nerozprávajú s robotmi s párnym číslom.
  2. Z7–I–6, výstava mačiek
    stoly Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka.
  3. Z7-I-4 hviezdičky 4949
    hviezdicky_mo Napíšte namiesto hviezdičiek, aby nasledujúci zápis súčinu dvoch čísel bol platný: ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 9 4 9 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗ ∗
  4. Vláčik
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakom. Vlak mal tri vagóny a v každom sa viezla práve tri čísla. Číslo 1 sa viezlo v prvom vagóne a v poslednom vagóne boli všetky čísla nepárne. Sprievodcovia cestou spočítal súčet čísel v prvom, druhom i posledným vag
  5. Obdĺžnik - kto má pravdu
    mo_1 Obdĺžnik je rozdelený na 7 políčok. Na každé políčko sa má napísať práve jedno z čísel 1, 2 a 3. Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto.
  6. Starý hodinár
    clock-night-schr Starý hodinár má vo svojej zbierke zvláštny digitálny budík, ktorý zvoní vždy, keď súčet cifier, ktorý budík ukazuje, sa rovná číslu 21. Zisti, v ktorých časoch bude budík zvoniť. Aký je ich počet? Vypíš všetky možnosti...
  7. Utierky
    uterky Mamička vyprala štvorcové utierky a vešia je vedľa seba na šnúru natiahnutú medzi dvoma stromami. Použila šnúru s dĺžkou 7,5 metra, pričom na uviazanie okolo kmeňa potrebovala na každej strane 8 dm. Všetky utierky majú šírku 45 cm. Medzi krajné utierky a k
  8. Klávesy
    klavesy Miško mal na poličke malé klávesy, ktoré vidíte na obrázku. Na bielych klávesoch boli vyznačené ich tóny. Klávesy našla malá Klára. Keď ich brala z poličky, vypadli jej z ruky a všetky biele klávesy sa z nich vysypali. Aby sa brat nehneval, začala je Klára
  9. Pán Cuketa
    cuketa Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n ak
  10. Šesťuholník nepravidelný
    6uholnik_nepravidelny Na obrázku je štvorec ABCD, štvorec EFGD a obdĺžnik HIJD. Body J a G ležia na strane CD, pričom platí |DJ| < |DG| a body H a E ležia na strane DA, pričom platí /DH/ < /DE/. Ďalej vieme, že /DJ/ = /GC/. Šesťuholník ABCGFE má obvod 96 cm, šesťuholník EFGJ
  11. Stonožka
    mnohonozky.JPG Stonožka Mirka pozostáva z hlavy a niekoľkých článkov, na každom článku má jeden pár nôh. Keď sa ochladilo, rozhodla sa, že sa oblečie. preto si na treťom článku od konca a potom na každom ďalšom treťom článku obliekla ponožku na ľavú nôžku. Podobne si na.
  12. Archeológovia
    flags Archeológovia zistili, že vlajka bájneho matematického kráľovstva bola rozdelená na šesť políčok, tak ako na obrázku. V skutočnosti bola vlajka trojfarebná a každé políčko bolo vyfarbené jednou farbou. Vedci už vybádali, že na vlajke bola použitá červená,.
  13. Myška Hryzka
    myska_hryzka Myška Hryzka našla 27 rovnakých kociek syra. Najskôr si z nich poskladala veľkú kocku a chvíľu počkala, než sa syrové kocôčky k sebe prilepili. Potom z každej steny veľkej kocky vyhryzie strednú kocôčku. Potom zjedla aj kocôčky, ktorá bola v stredu veľkej.
  14. Rovnoramenný - Z7–I–5
    triangles_12 Je daný trojuholník ABC so stranami /AB/ = 3 cm, /BC/ = 10 cm a uhlom ABC = 120°. Narysujte všetky body X tak, aby platilo, že trojuholník BCX je rovnoramenný a súčasne trojuholník ABX je rovnoramenný so základňou AB.
  15. Štvorcová sieť
    sit Štvorcová sieť sa skladá zo štvorca so stranou dĺžky 1cm. Narysujte do nej aspoň tri rôzne obrazce také, aby každý mal obsah 6 cm2 a obvod 12cm a aby ich strany splývali s priamkami siete.
  16. Štedrý deň
    stedryd V nepriestupnom roku bolo 53 nedieľ. Na aký deň týždňa pripadol Štedrý deň?
  17. Bicykle
    cyclist_11 Si majiteľ dopravného ihriska. Kúp bicykle dvoch farieb ľubovoľného počtu, ale musíš minúť presne 120000Kč. Modrý bicykel stojí 3600Kč a červený bicykel stojí 3200Kč.