Kinosála

V kinosále sedeli siedmaci, ôsmaci a deviataci. Spolu bolo v kinosále 250 žiakov. Siedmakov bolo o 30 viacej ako ôsmakov, a ôsmakov o 10 menej ako deviatakov. Určte, koľko bolo ktorých žiakov.

Výsledok

a =  100
b =  70
c =  80

Riešenie:


a+b+c=250
a=30+b
b = c-10

a+b+c = 250
a-b = 30
b-c = -10

a = 100
b = 70
c = 80

Vypočítané naším kalkulátorom sústavy lineárnych rovníc.








Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Máte sústavu rovníc a hľadáte kalkulačku sústavy lineárnych rovníc?

Ďaľšie podobné príklady:

  1. Bratská trojka
    vojaciky Juraj, Milan a Adrián majú spolu 93 vojačikov. Juraj má o 3 vojačikov viacej ako Milan. Adrián má o 15 vojačikov viacej ako Milan. Určite, koľko má každý z nich.
  2. Ubytovňa pre školákov
    fractal_2 V ubytovni je 90 osôb; chlapcov je trikrát viac ako dievčat, učiteľov je o 70 menej ako chlapcov a dievčat spolu. Koľko je učiteľov?
  3. Trojka
    family_4 Otec, mama a dcéra majú spolu 100 rokov. Otec má štyrikrát viac rokov ako dcéra. Mama má o 10 rokov viac, ako je polovica súčtu otca a dcéry. Koľko rokov má každý z nich?
  4. Janka 3
    andulka.smejkox Janka a Danka mali spolu 125 slnečnicových semienok. Pri jedení bola Jana šikovnejšia a zjedla o 13 semienok viac. Posledných 6 semienok dali papagájovi. Koľko semienok zjedla Jana a koľko Dana?
  5. Stromy
    hruska V sade rastú hrušky a čerešne. Spolu je tu 510 stromov. Polovica všetkých čerešní a štvrtina všetkých hrušiek je práve toľko, koľko je všetkých čerešní. Koľko je hrušiek a koľko čerešní ?
  6. Sladkosti
    nanuk Jeden nanuk a jedna čokoláda stoja spolu 2€ a 10 centov. Tri nanuky a dve čokolády stoja 5€ a 10 centov. Koľko stojí jeden nanuk a koľko jedna čokoláda?
  7. Vstupenky
    tickets Vstupenky do zoo stojí 4 doláre pre deti, 5 USD pre teenagerov, 6 dolárov pre dospelých. V sezóne, 1200 ľudí príde do zoo každý deň. V určitý deň, celkový príjem v zoo bolo 5300 dolárov. Na každých 3 teenagerov 8 detí išlo do zoo. Koľko tínedžerov (t=?), d
  8. Divízie závodu
    factory_2 Závod sa skladá z 3 pomocných závodov celkom 2406 zamestnancov. Druhý závod má o 76 zam. menej ako 1.závod a 3.závod má o 212 zam. viac než druhý. Koľko zam. majú jednotlivé závody?
  9. Huby/hríby
    huby_2 Eva a Jana nazbierali dohromady 114 húb. Eva našla dvakrát viac ako Jana. Koľko našla každá z nich?
  10. Dve čísla
    maxwells-equation Mám dve čísla. Ich súčet je 140. Jedna pätina prvého čísla sa rovná polovici druhého čísla. Určte tieto neznáme čísla.
  11. Eliminačná metóda
    rovnice_1 Riešte sústavu lineárnych rovníc eliminačnou metódou: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  12. Sčítance 7
    eq2_7 Vypocitaj väčšieho z dvoch scitancou ak vieš, že menší sčítanie je tretinou väčšieho a ich súčet je 48
  13. Rovnice
    p1110617 Riešte nasledujúcu sústavu rovníc: 6(x+7)+4(y-5)=12 2(x+y)-3(-2x+4y)=-44
  14. Sústava rovníc
    vahy_eq Vyriešte tento lineárny systém/sústavu (dve lineárne rovnice s dvoma neznámymi): x+y =36 19x+22y=720
  15. Zlomková čiara
    eq2_11 Riešte v RxRxR sústavy 3 lineárnych rovníc s tromi neznámymi: 1/2 x+3/4 y=6z 2x-z=10 1/2 2z+x=2y+7 pozn. : / je zlomková čiara
  16. Vyriešte
    oriesky_2 Vyriešte sústavu dvoch rovníc s dvoma neznámymi x a y : 3x - 4y =12 -x + 3y =1 Súčet x + y sa bude rovnať?
  17. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?