Vrecko

V nepriehladnom vrecku sú červené, biele, žlté, modré žetóny, ťaháme 3x po jednom žetóne a opäť ho vrátime, napíš všetky možnosti

Výsledok

n =  64

Riešenie:

Textové riešenie n =
Textové riešenie n = : č. 1
Textové riešenie n = : č. 1
Textové riešenie n = : č. 1
Textové riešenie n = : č. 1
Textové riešenie n = : č. 1







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Pozrite aj našu kalkulačku permutácií. Pozrite aj našu kalkulačku variácií. Chceš si dať zrátať kombinačné číslo?

Ďaľšie podobné príklady:

  1. Kostýmy
    kostym V zostave ma 12 dievčat červené a 25 dievčat modré kostýmy. Koľkými spôsobmi z nich môžme zostaviť skupinu 6 dievčat tak, aby 4 dievčatá mali červené kostýmy?
  2. Dresy
    futball_ball_3 Tomáš má štyri futbalové dresy: červený, modrý, biely a zelený. Koľkými spôsobmi ich môže Tomáš poukladať na policu vedľa seba tak, aby červený a modrý dres boli susedné?
  3. Gule
    spheres Z osudia, v ktorom je 10 gulí bielych a 18 červených, ťaháme postupne 3-krát bez vrátenia. Aká je pravdepodobnosť, že vytiahneme gule v poradí: červená biela červená?
  4. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  5. Poháry
    glasses_1 Mám 7 pohárov: 1 2 3 4 5 6 7. Koľko je možnosti postavenia pohárov ak 1 a 2 sú stále vedľa seba a môžu sa navzájom prehodiť?
  6. Kopec
    lanovka.JPG Do kopca vedú 2 cesty a 1 lanovka. a)koľko je všetkých možností tam a späť b)koľko je všetkých možností aby cesta tam a späť nebola rovnaká c)koľko je všetkých možností aby sme išli aspoň raz lanovkou
  7. Filatelisti
    znamky Koľkými rôznymi spôsobmi môžu členovia 7 členného filatelistického krúžku zvoliť zo svojich radov tajomníka a hospodára?
  8. Venček
    vencek Na venček prišlo 12 chlapcov a 15 dievčat. Koľkými spôsobmi môžeme vybrať 4 tanečné páry?
  9. Daný je 2
    equliateral_1 Daný je rovnostranny trojuholník A, B, C na každej jeho vnútornej strane N bodov. Určite počet všetkých trojuholníkov, ktorých vrcholy ležia v daných bodoch na rôznych stranách.
  10. Variácie
    pantagram Určte počet prvkov ak je počet variacií štvrtej triedy bez opakovania 38-krát väčší ako počet variacií tretej triedy bez opakovania.
  11. Medaila
    medails Koľkými spôsobmi je možné rozdeliť zlatú, striebornú a bronzovú medailu medzi 21 súťažiacich?
  12. Olympiáda
    olympics Koľkými spôsobmi sa môžu umiestniť šiesti pretekári na medailových pozíciách na olympiáde? Na farbe kovu záleží.
  13. Slovo MATEMATIKA
    math_1 Koľko slov možno vytvoriť zo slova MATEMATIKA zmenou poradím písmen pričom neberiene ohľad nato či vzniknuté slová majú význam?
  14. Permutácie
    permutations_3 Z koľkých prvkov môžeme zostaviť 720 permutácií bez opakovania?
  15. Tréningy
    tenis V tabuľke je harmonogram sobotňajších tenisových tréningov mladších žiakov počas zimnej halovej sezóny. Pred začiatkom letnej sezóny sa pripravuje nový harmonogram tréningov. Tomáš Kučera bude môcť trénovať len predpoludním, sestry Kováčové budú musieť tré
  16. Variácie 4/2
    pantagram_1 Určte počet prvkov, ak je počet variacií štvrtej triedy bez opakovania 600-krát väčší ako počet variacií druhej triedy bez opakovania.
  17. Srdcia
    hearts_cards 4 kariet je vybraných ze štandardnej sady 52 hracích kariet (13 sŕdc) s vrátením. Aká je pravdepodobnosť, že vytiahneme 4 sŕdc po sebe?