Z9-I-4

Katka si myslela päťciferné prirodzené číslo. Do zošita napísala na prvý riadok súčet mysleného čísla a polovice mysleného čísla. Na druhý riadok napísala súčet mysleného čísla a pätiny mysleného čísla. Na tretí riadok napísala súčet mysleného čísla a devätiny mysleného čísla. Nakoniec spočítala všetky tri zapísaná čísla a výsledok napísala na štvrtý riadok. Potom s úžasom zistila, že na štvrtom riadku má zapísanú tretiu mocninu istého prirodzeného čísla.

Určte najmenšie číslo, ktoré si Katka mohla myslieť na začiatku.

Výsledok

n =  11250

Riešenie:

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 3 komentáre:
#1
Žiak
DAds

#2
Žiak
dalo by sa to ešte raz vysvetliť? nepochopil som tomu ako ste sa dostali k výsledku? ďakujem

#3
Žiak
Nepochopila jsem jak se z těch 35 stane 11250 protože 35na třetí není 11250

avatar









Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?

Ďaľšie podobné príklady:

  1. Z7-I-4 MO 2017
    math_mo_2 Na stole ležalo šesť kartičiek s ciframi 1, 2, 3, 4, 5, 6. Anežka z týchto kartičiek zložila šesťciferné číslo, ktoré bolo deliteľné šiestimi. Potom postupne odoberala kartičky sprava. Keď odobrala prvú kartičku, zostalo na stole päťciferné číslo deliteľné
  2. Košíky
    hrusky_jablka V šiestich košíkoch má predavač ovocie. V jednotlivých košíkoch sú len jablká alebo len hrušky s nasledovným počtom ovocia: 5,6,12,14,23 a 29. ,,Ak predám tento košík, " rozmýšľa predavač ,,potom mi ostane práve dvakrát toľko jablk ako hrušiek. " Na ktorý.
  3. Asymetrické číslo
    powers_1 Nájdite najmenšie prirodzené číslo k, pre ktoré je číslo 11 na k asymetrické. ( napr. 112 = 121)
  4. Ktoré
    numbers2_45 Ktoré prirodzené číslo menšie ako 100 má najväčší počet deliteľov?
  5. Zvyšok
    numbers2_35 A je ľubovoľné prirodzené číslo, ktoré dáva pri delení číslom 6 zvyšok 1. B je ľubovoľné prirodzené číslo, ktoré dáva pri delení číslom 3 zvyšok 2. Aký zvyšok dáva pri delení tromi súčin čísel A. B?
  6. Posledná cifra
    olympics_3 Aké je posledné číslo 2016-tej mocniny čísla 2017?
  7. Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa čí
  8. Sto známok
    stamp_4 Je sto listových známok a stojí sto korún. Sú tam známky dvacaťhalierové, korunové, dvojkorunové a 5 korunové. Koľko je ktorých? Koľko má úloha riešení?
  9. Trojciferné 6
    seven Koľko existuje trojcifernych prirodzených čísel v ktorých sa nevyskytuje číslica 7?
  10. Trojciferné
    primes Napíšte najmenšie trojciferné číslo, ktoré pri delení 5 a 7 dáva zvyšok 2.
  11. Úžasné číslo
    numbers4 Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
  12. Neznáme číslo
    unknown Neznáme číslo je deliteľné práve tromi rôznymi prvočíslami. Keď tieto prvočísla porovnáme vzostupne, platí nasledujúce: • Rozdiel druhého a prvého prvočísla je polovicou rozdielu tretieho a druhého prvočísla. • Súčin rozdielu druhého a prvého prvočísla s r
  13. Domček Z9–I–5
    Mysky Myšky si postavili podzemný domček pozostávajúci z komôrok a tunelkov: • každý tunel vedie z komôrky do komôrky (tzn. žiadny nie je slepý), • z každej komôrky vedú práve tri tunely do troch rôznych komôrok, • z každej komôrky sa dá tunelom dostať do ktore
  14. Delitele
    divisors Súčet všetkých deliteľov istého nepárneho čísla je 2112. Určte, aký je súčet všetkých deliteĺov dvojnásobku tohto neznámeho čísla.
  15. Chovprodukt
    fish Z chovproduktu (Zverimexu) vypredávali rybky z jedného akvária. Ondrej chcel polovicu všetkých rybiek, ale aby nemuseli žiadnu rybku rezať, dostal o polovicu rybky viac, ako požadoval. Matej si prial polovicu zvyšných rybiek, ale rovnako ako Ondrej dostal.
  16. Tretia odmocnina
    30gon_1 Nájdite tretiu odmocninu z 18
  17. Lode
    cargoship 1. Grécka loď odchádza o 6 a vezie kávu. 2. Prostredná loď ma čierny komin. 3. Anglická loď odchádza o deviatej. 4. Francúzska loď je vlavo o lodi vezucej kavu a ma modrý komín . 5. Vpravo od lodi vezúcej kakao je loď idúca do Marseille, 6. Brazilska lod i