Z9-I-4

Katka si myslela päťciferné prirodzené číslo. Do zošita napísala na prvý riadok súčet mysleného čísla a polovice mysleného čísla. Na druhý riadok napísala súčet mysleného čísla a pätiny mysleného čísla. Na tretí riadok napísala súčet mysleného čísla a devätiny mysleného čísla. Nakoniec spočítala všetky tri zapísaná čísla a výsledok napísala na štvrtý riadok. Potom s úžasom zistila, že na štvrtom riadku má zapísanú tretiu mocninu istého prirodzeného čísla.

Určte najmenšie číslo, ktoré si Katka mohla myslieť na začiatku.

Výsledok

n =  11250

Riešenie:

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 3 komentáre:
#1
Žiak
DAds

#2
Žiak
dalo by sa to ešte raz vysvetliť? nepochopil som tomu ako ste sa dostali k výsledku? ďakujem

#3
Žiak
Nepochopila jsem jak se z těch 35 stane 11250 protože 35na třetí není 11250

avatar









Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?

Ďaľšie podobné príklady:

  1. Z7-I-4 MO 2017
    math_mo_2 Na stole ležalo šesť kartičiek s ciframi 1, 2, 3, 4, 5, 6. Anežka z týchto kartičiek zložila šesťciferné číslo, ktoré bolo deliteľné šiestimi. Potom postupne odoberala kartičky sprava. Keď odobrala prvú kartičku, zostalo na stole päťciferné číslo deliteľné
  2. Z7–I–1 MO 2018
    numbers2_49 Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné č
  3. MO Z8 – I – 4 2018
    olympics_8 Na štyroch kartičkách boli štyri rôzne cifry, z ktorých jedna bola nula. Vojto z kartičiek zložil čo najväčšie štvorciferné číslo, Martin potom čo najmenšie štvorciferné číslo. Adam zapísal na tabuľu rozdiel Vojtovho a Martinovho čísla. Potom Vojto z karti
  4. Z9 – I – 6 2018 MO
    numbers2_49 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dvo
  5. Asymetrické číslo
    powers_1 Nájdite najmenšie prirodzené číslo k, pre ktoré je číslo 11 na k asymetrické. ( napr. 112 = 121)
  6. Ktoré
    numbers2_45 Ktoré prirodzené číslo menšie ako 100 má najväčší počet deliteľov?
  7. Zvyšok
    numbers2_35 A je ľubovoľné prirodzené číslo, ktoré dáva pri delení číslom 6 zvyšok 1. B je ľubovoľné prirodzené číslo, ktoré dáva pri delení číslom 3 zvyšok 2. Aký zvyšok dáva pri delení tromi súčin čísel A. B?
  8. Posledná cifra
    olympics_3 Aké je posledné číslo 2016-tej mocniny čísla 2017?
  9. Klobúk
    hat V klobúku sú čísla od 1-20. Aká je pravdepodobnosť, že z klobúka vytiahneme: a/ jednociferné číslo b/ prvočíslo c/ číslo vačšie ako 11 d/ číslo deliteľné šiestimi Ďakujem
  10. Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa čí
  11. Sto známok
    stamp_4 Je sto listových známok a stojí sto korún. Sú tam známky dvacaťhalierové, korunové, dvojkorunové a 5 korunové. Koľko je ktorých? Koľko má úloha riešení?
  12. Pyramída Z8–I–6
    pyramida_mo Každá tehlička zobrazenej pyramídy obsahuje jedno číslo. Kedykoľvek to je možné, je číslo v každej tehličke najmenším spoločným násobkom čísel z dvoch tehličiek ležiacich priamo nad ňou. Ktoré číslo môže byť v najspodnejšej tehličke? Určite všetky možnosti
  13. Domček Z9–I–5
    Mysky Myšky si postavili podzemný domček pozostávajúci z komôrok a tunelkov: • každý tunel vedie z komôrky do komôrky (tzn. žiadny nie je slepý), • z každej komôrky vedú práve tri tunely do troch rôznych komôrok, • z každej komôrky sa dá tunelom dostať do ktore
  14. Veky
    age_7 Keď bude Bedrichovi toľko rokov čo je Adamovi dnes, bude mať Adam 14 rokov. Keď bude Adamovi toľko rokov koľko má Bedrich dnes, bolo Bedrichovi dva roky. Koľko rokov je dnes Adamovi a Bedrichovi?
  15. Chovprodukt
    fish Z chovproduktu (Zverimexu) vypredávali rybky z jedného akvária. Ondrej chcel polovicu všetkých rybiek, ale aby nemuseli žiadnu rybku rezať, dostal o polovicu rybky viac, ako požadoval. Matej si prial polovicu zvyšných rybiek, ale rovnako ako Ondrej dostal.
  16. Delitele
    divisors Súčet všetkých deliteľov istého nepárneho čísla je 2112. Určte, aký je súčet všetkých deliteĺov dvojnásobku tohto neznámeho čísla.
  17. Tretia odmocnina
    30gon_1 Nájdite tretiu odmocninu z 18