Terasa

Pán Novák chce vydláždiť terasu dlaždicami dvoch veľkostí, aby malých bolo rovnako veľa ako veľkých. Jeho terasa má tvar štvorca so stranou dlhou 3 metre. Z dvoch strán terasy je stena domu. Popri stene chce dať malé dlaždice, na zvyšok veľké. Chce len štvorcové dlaždice so stranou dlhou max. 55 cm.
Koľko si musí kúpiť dlaždíc? Akú dlhú stranu musia mať veľké dlaždice? Akú dlhú stranu musia mať malé dlaždice?

Výsledok

n =  52
a =  54.477 cm
b =  22.222 cm

Riešenie:

Textové riešenie n =
Textové riešenie a =
Textové riešenie b =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?

Ďaľšie podobné príklady:

  1. Predaje
    cukriky_9 Za 80 výrobkov dvojakej akosti sa utŕžilo celkom 175 Eur. Ak výrobok prvej kvality sa predával po n Eur za kus (n prirodzené číslo) a výrobok druhej akosti po dvoch Eur za kus, koľko kusov prvej kvality bolo predaných?
  2. MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozoberať
  3. Klampiar
    klempir Klampiar mal postrihať pás plechu o rozmeroch 380 cm a 60cm na čo najväčšie štvorec tak, aby nevznikol žiadny odpad. Vypočítaj dĺžku strany jedného štvorca. Koľko štvorcov nastrihal?
  4. Tretiu s druhou
    sqrt_1 Máme 2 čísla. Keby sme vynásobili tretiu odmocninu prvého čísla s druhou odmocninou druhého čísla, dostali by sme číslo 18.Určte tieto 2 čísla. Ak má úloha v množine reálnych čísel nekonečne veľa riešení, vypočítajte len celočíselné riešenie.
  5. Steny kvádra
    cuboid_9 Vypočítajte objem kvádra, ak jeho rôzne steny majú obsahy 195cm², 135cm² a 117cm².
  6. Pravouhlý trojuholník Alef
    r_triangle area pravouhlého trojuholníka je 294 cm2 a jeho prepona má dĺžku 35 cm. Aké sú dĺžky jeho odvesien?
  7. Vypočítajte 5
    rt_triangle_1 Vypočítajte dĺžky strán a uhly v pravouhlom trojuholníku. S=210, o=70.
  8. Práca a koláče
    eura_10 Jedna firma zamestnala študenta-vysokoškoláka na celý mesiac jún na farme tak, že mu platila 16 € spolu s celodennou stravou na jeden deň. Ak v daný deň nepracoval, musel zaplatiť 6 € za stravu. Koľko dní študent pracoval, ak za mesiac jún zarobil 348 € ?
  9. Hrnčeky
    hrnceky Teta kúpila 6 rovnakých hrnčekov a jednu kanvicu na kávu. Spolu zaplatila 60€. Kanvica bola drahšia ako jeden hrnček, ale lacnejšia ako dva hrnčeky. Teta si pamätala, že všetky ceny boli v celých eurách. Koľko € stál jeden hrnček a koľko kanvica?
  10. Višne
    visne Višne v miske môžu byť rozdelené rovnakým dielom medzi 8 alebo 10 alebo 11 detí. Koľko najmenej je v miske višní?
  11. Diofant 2
    1diofantos Je rovnica   ? riešiteľná na množine celých čísel Z?
  12. Pletenka
    pletenky Pletenka stojí 44 centov. Koľko pleteniek treba najmenej kúpiť, aby sme mohli zaplatiť v hotovosti iba celými eurami?
  13. MO - bikvadrát
    eq2_6 Nájdite najväčšie prirodzené číslo d, ktoré má tú vlastnosť, že pre ľubovoľné prirodzené číslo n je hodnota výrazu V(n)=n4+11n2−12 deliteľná číslom d.
  14. Úsečky
    segments Úsečky dĺžok 67 cm a 3.1 dm máme rozdeliť na rovnaké diely tak, aby ich dĺžka v centimetroch bola vyjadrená celým číslom. Koľkými spôsobmi ich môžeme deliť?
  15. 3uholník obsah
    right_triangle_1 Vypočítajte obsah pravouhlého trojuholníka, ktorého dlhšia odvesna je o 6 dm kratšia ako prepona a o 3 dm dlhšia ako kratšia odvesna.
  16. Ciferný súčet
    number_line_3 Ciferný súčet dvojciferného čísla je deväť. Keď čísla obrátime a vynásobíme pôvodným dvojciferným číslom, dostaneme číslo 2430. Aké je pôvodne dvojciferné číslo?
  17. Kvocient geometrickej
    geometricka-postupnost a1+a3=15 a1+a2+a3=21 Vypočítajte a1 a q(kvocient geometrickej postupnosti).