Sčítance

Určte dvoch sčítancov čísla 42 tak, aby ich súčin bol čo najmenší.

Výsledok

a =  1
b =  41

Riešenie:

Textové riešenie a =
Textové riešenie b =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 1 komentár:
#1
Www
treba dodat ze nezaporne scitance....

avatar









Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?

Ďaľšie podobné príklady:

  1. Tretiu s druhou
    sqrt_1 Máme 2 čísla. Keby sme vynásobili tretiu odmocninu prvého čísla s druhou odmocninou druhého čísla, dostali by sme číslo 18.Určte tieto 2 čísla. Ak má úloha v množine reálnych čísel nekonečne veľa riešení, vypočítajte len celočíselné riešenie.
  2. Predaje
    cukriky_9 Za 80 výrobkov dvojakej akosti sa utŕžilo celkom 175 Eur. Ak výrobok prvej kvality sa predával po n Eur za kus (n prirodzené číslo) a výrobok druhej akosti po dvoch Eur za kus, koľko kusov prvej kvality bolo predaných?
  3. Bicykle
    cyclist_11 Si majiteľ dopravného ihriska. Kúp bicykle dvoch farieb ľubovoľného počtu, ale musíš minúť presne 120000Kč. Modrý bicykel stojí 3600Kč a červený bicykel stojí 3200Kč.
  4. Neznáme 30
    numbers_49 Neznáme číslo zmenším o 5 a výsledný rozdiel vynásobím tromi. Nakoniec výsledný súčin zväčším o 6 a dostanem najmenší spoločný násobok čísel 3 a 8. Vypočítaj neznáme číslo.
  5. Cukríky MO Z6-I-5 2017
    cukriky_10 V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?
  6. Práca a koláče
    eura_10 Jedna firma zamestnala študenta-vysokoškoláka na celý mesiac jún na farme tak, že mu platila 16 € spolu s celodennou stravou na jeden deň. Ak v daný deň nepracoval, musel zaplatiť 6 € za stravu. Koľko dní študent pracoval, ak za mesiac jún zarobil 348 € ?
  7. Metre - meradlá
    meters Mame dve meradlá. Dieliky na jednom sú navzajom vzdialené 1 cm, na druhom 15 mm. Meradlá sú priložené k sebe tak, že splývajú ich počiatočných čiarky. Ktoré ďalšie deliace čiarky splývajú? Nájdite aspoň tri prípady.
  8. Pletenka
    pletenky Pletenka stojí 44 centov. Koľko pleteniek treba najmenej kúpiť, aby sme mohli zaplatiť v hotovosti iba celými eurami?
  9. Hrnčeky
    hrnceky Teta kúpila 6 rovnakých hrnčekov a jednu kanvicu na kávu. Spolu zaplatila 60€. Kanvica bola drahšia ako jeden hrnček, ale lacnejšia ako dva hrnčeky. Teta si pamätala, že všetky ceny boli v celých eurách. Koľko € stál jeden hrnček a koľko kanvica?
  10. MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozoberať
  11. Huby z lesa
    dubak Magda a Terezka išli na huby. Celkom našli 70 húb. Magda zistila, že medzi hubami našla 5/9 bedlí. Tereza zistila, že medzi jej nájdenými hubami sú 2/17 šampiňónov. Koľko húb našla Magda?
  12. Pomaranče
    pomaranc_2 Mamka rozdelila svojim trom deťom pomaranče v pomere 6:5:4. Dvom deťom dala 45 pomarančov. Koľko bolo všetkých pomarančov?
  13. MO - bikvadrát
    eq2_6 Nájdite najväčšie prirodzené číslo d, ktoré má tú vlastnosť, že pre ľubovoľné prirodzené číslo n je hodnota výrazu V(n)=n4+11n2−12 deliteľná číslom d.
  14. Prvočísla 2
    18-785s07 Pre ktoré prvočísla platí: p2-(q+r)2=647
  15. Steny kvádra
    cuboid_9 Vypočítajte objem kvádra, ak jeho rôzne steny majú obsahy 195cm², 135cm² a 117cm².
  16. Guľa a tri body
    sphere2_1 Nájdite rovnicu gule ak na povrchu gule ležia tri body (a, 0,0), (0, a, 0), (0,0, a) a stred leží na rovine x + y + z = a.
  17. Druhá odmocnina
    parabola_2 Ak je druhá odmocnina z 3m2 +22 -x = 0 a x = 7, čo je m?