Laco na cyklotriale

Kamil bol na cyklotriale. Pod kopcom nastavil prevod vpredu na ozubené koleso so 42 zubami a vzadu na ozubenom kole s 35 zubami. Po koľkých otočeniach predného ozubeného kolesa sa obe kolesa dostanú do rovnakej vzájomnej polohy ?

Výsledok

n =  5

Riešenie:

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Chceš si vypočítať najmenší spoločný násobok dvoch alebo viacerých čísel?

Ďaľšie podobné príklady:

  1. Cyklotrial
    cyklo Kamil bol na cyklotriale. Pod kopcom nastavil prevod vpredu na ozubené koleso so 42 zubami a vzadu na ozubené koleso so 35 zubami. Po koľkých cvičeniach (otočeniach) predného kolesa sa obe kolesa dostanú do rovnakej polohy?
  2. Bez centov
    cent Janko kupoval ceruzky po 35 centov. Ani on, ani predavačka nemali drobnejšie peniaze, len celé 1€ mince. Najmenej koľko ceruziek musel kúpiť, aby mohol zaplatiť celými eurami?
  3. Zápis dekadických čísel
    numbers_34 Napíš v desiatkovej sústave skrátený aj rozvinutý zápis týchto čísel: a) štyritisíc sedemdesiat deväť b) päťsto jeden tisíc šesťsto desať c) deväť miliónov dvadsať šesť
  4. Násobok - NSN
    numbers2_19 Najmenší násobok čísla 63 a 147
  5. Rozdelenie
    ratios_2 Riaditeľ školy uvažoval či rozdelenie žiakov pri orientačnom závode do skupín po 4,5,6,9 alebo 10. Koľko musí mať najmenej škola žiakov ak sú možné všetky varianty?
  6. Prirodzené číslo
    numbers2_49 Aké je najmenšie prirodzené číslo deliteľné 2,5,7,8 a 15?
  7. Tanečný súbor
    dancers_1 Tanečný súbor nastúpil na javisko vo dvojiciach. Počas tanca tanečníci vytvárali postupne skupiny po štyroch, šiestich a deviatich. Kolko tanečníkov má súbor?
  8. Jablká 2
    jableka Koľko minimálne jabĺk je v košíku, ak je možné ich bezo zvyšku rozdeliť do balíčkov po 6, 14 i 21 kusoch?
  9. Nsn
    EisensteinPrimes Vypočítaj najmenší spoločný násobok čísel 120, 660 a 210.
  10. Deliteľnosť 2
    divisors Koľko deliteľov má prirodzené číslo 13?
  11. Stoly
    stolik V jedálni sú stoly so: 4 stoličkami, 6 stoličkami, 8 stoličkami. Koľko najmenej stravníkov musí byť, aby boli obsadené všetky stoly a stravníkov je viac ako 50?
  12. Divná rovnica
    divne2 Riešte rovnicu: (4x/2,5x)+(2,4:x)=3,1. x je prirodzené číslo.
  13. Tri autobusy
    3buses Tri autobusy MHD ráno vyrážajú spoločne z autobusovej stanice. Prvý autobus sa vracia na stanicu po 18 minútach, druhý po 12 minútach a tretí po 24 minútach. Za ako dlho vyjdú opäť spoločne zo stanice? Výsledok vyjadrite v hodinách a minútach.
  14. Súčet dvoch prvočísel
    prime_1 Matematik Christian Goldbach zistil, že každé párne číslo väčšie ako 2 môže byť vyjadrené ako súčet dvoch prvočíselných čísel. Napíšte alebo vyjadrite 2018 ako súčet dvoch prvočísel.
  15. Zápalky
    matches Juraj vysypal z krabičky zápalky a zostavoval z nich postupne trojuholníky a pritom žiadna zápalka nezostala. Potom skúsil štvorce, šesťuholníky a osemuholníky a tiež žiadna zápalka nezostala. Koľko najmenej zápaliek mohlo byť žiadne v krabičke?
  16. Tri autobusy
    buses Ráno o 5.00 hod. vyrážajú z jedného miesta spolu 3 autobusy. Prvý chodí v 5-minútových intervaloch, druhý v 10-minútových intervaloch a tretí v 25-minútových intervaloch. O ktorej hodine budú opäť všetky tri autobusy vychádzať z toho istého miesta?
  17. Prístav
    port V prístave kotvia štyri lode. Spoločne vyplávajú z prístavu. Prvá loď sa do prístavu vracia vždy po dvoch týždňoch, druhá po 4, tretia po 8 a štvrtá po 12 týždňoch. O koľko týždňov sa prvýkrát zase všetky lode stretnú v prístave?