Genetika

Vykonal sa experiment, ktorý spočíval v krížení bieleho a fialového hrachu, pričom sa predpokladalo, že pokusné rastliny neboli ešte krížené. Podľa pravidiel dedičnosti možno očakávať, že 3/4 nových potomkov rozkvitne na fialovo a 1/4 na bielo. Vzklíčilo 10 rastlín. Určte pravdepodobnosť toho, že na fialovo rozkvitnú aspoň tri rastliny.

Výsledok

p =  99.851 %

Riešenie:

Textové riešenie p =
Textové riešenie p = : č. 1







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 2 komentáre:
#1
Žiak
priklad je asi lepsi resit negaci ako primo pocitat, 3,4,5,6,7,8,9,10 fialovych, pocita se 0,1,2 (co je mene pocitani)

#2
Žiak
Zadanie je zle. Taketo krizenie nikdy nedosiahne pravdepodobnost 3/4 fialovych a 1/4 bielych v prvej generacii hrachu s homozygotnymi genotypmi. Takato moznost je az v druhej generacii hrachu pri krizeni dvoch heterozygotnych hrachov z krizenia dvoch rozdielnych homozygotnych genotypov rodicov s dominantnou fialovou alelou (3/4 su fialove => fialova farba je dominantna) a recesivnou bielou.

avatar









Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Pozrite aj našu kalkulačku kombinácií. Hľadáte štatistickú kalkulačku?

Ďaľšie podobné príklady:

  1. Generálny riaditeľ
    normal_dist Výpočtom rozhodnite koľko kandidátov z celkového počtu 1000 kandidátov na funkciu generálneho riaditeľa plní požiadavky spôsobilosti na žiaducemu výkone tejto top manažérske funkcie s aspoň 67% pravdepodobnosťou - samozrejme za predpokladu, že spôsobilosť.
  2. Jedna zelená
    gulicky V nádobe je 45 bielych a 15 zelených guličiek. Náhodne vyberieme 5 guličiek. Aká je pravdepodobnosť, že bude maximálne jedna zelená?
  3. Gule v urne
    spheres_1 V urne je 8 bielych a 6 čiernych gulí. Náhodne vytiahneme 4 gule. Aká je pravdepodobnosť, že medzi nimi budú 2 biele?
  4. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  5. Priadza
    priadza Pracovníčka obsluhuje 600 vretien, na ktoré sa navíja priadza. Pravdepodobnosť roztrhnutia priadze na každom z vretien za čas t je 0,005. a) Určte rozdelenie pravdepodobnosti počtu roztrhnutých vretien za čas t a strednú hodnotu a rozptyl. b) Aká je prav
  6. Trojice
    trojka Koľko rôznych trojíc možno vybrať zo skupiny 38 študentov?
  7. Akvárium
    zebra_fish Akvárium v obchode so zvieratkami má 32 zebra rybičiek. Koľkých rôznymi spôsobmi môže Peter vybrať 5 zebra rybičiek?
  8. Kartári
    cards_4 Hráč dostane 8 kariet z 32. Aká je pravdepodobnosť že dostane a, všetky 4 esá b. aspoň 1 eso
  9. V cukrárni
    ice_cream V cukrárni predávajú 5 druhov zmrzlín. Koľkými spôsobmi si môžem kúpiť 3 druhy, ak mi na poradí zmrzlín nezáleží?
  10. Výpočet KČ
    color_combinations Vypočítajte: ?
  11. V krabici
    gulky_7 V krabici je 8 loptičiek, z nich sú 3 nové. Pre prvú hru sa z krabice vyberú náhodne 2 loptičky, ktoré sa po hre vrátia späť ! Pre druhú hru sa opäť náhodne vyberú 2 loptičky, aká je pravdepodobnosť toho že obe už boli použité?
  12. Hodíme
    dices2_5 Hodíme 10 krát hracou kockou, aká je pravdepodobnosť, že šestka padne práve 4 krát?
  13. Test 5
    test_4 Učitel pripravil test s desiatimi otázkami. Študent má v každej otázke možnosť vybrať jednu správnu odpoveď zo štyroch (A, B,C, D). Študent sa na písomku vôbec nepripravil. Aká je pravdepodobnosť, že: a) Uhádne polovicu odpovedí správne? b) uhádne všetk
  14. Maturitka
    losovanie Slohových maturitných tém zo Slovenského jazyka je 8. Minister školstva z nich vyžrebuje 4. Aká je pravdepodobnosť že vyberie aspoň jednu z dvojice Úvaha, Diskusný príspevok.
  15. Kniha
    books_32 Kniha obsahuje 524 strán. Ak je známe, že osoba vyberie ľubovoľnú stranu medzi strana s číslom 125 a 384, nájdite pravdepodobnosť výberu strany s číslom 252 alebo 253.
  16. Distribučná funkcia
    distribution_fcn X 2 3 4 p 0,3 0,35 0,35 Pre údaje v tejto tabuľke mám vypočítať distribučnú funkciu F(x) a ďalej p(2,5 < ξ< 3,25), p(2,8 < ξ) a p(3,25 > ξ)
  17. Kombinácie
    math_2 Z koľkých prvkov môžeme vytvoriť 990 kombinácií 2. triedy bez opakovania?