Koza 4

Slnko vychádza na východe od prístrešku a zapadá na západe. Koze by sa zišlo trochu tieňa, kde a aký druh stromu treba zasadiť , aby ho neobjedla?

Výsledok

x=##:  0







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Ďaľšie podobné príklady:

  1. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  2. Karty
    cards_2 Predpokladajme, že v klobúku sú tri karty. Jedna z nich je červená na obidvoch stranách, jedna z nich je čierna na obidvoch stranách a tretia má jednu stranu červenú a druhú čiernu. Z klobúka náhodne vytiahneme jednu kartu, a vidíme, že jedna jej strana je
  3. Pomer
    geometric_2 Určte podiel prvého a druhého člena GP, ak q=-0,3, a a3=5,4.
  4. Derivácia spojitej
    dxdy Existuje taká funkcia, ktorá je spojitá a nemá v každom bode deriváciu?
  5. Nádoby 2
    gule_4 V prvej nádobe máme 3 biele a 6 čiernych guľôčok. V druhej nádobe máme 2 biele a 6 čiernych guľôčok. Z prvej nádoby náhodne preložíme do druhej nádoby 1 guľôčku. Aká je pravdepodobnosť, že potom z druhej nádoby vyberiem 2 biele guľôčky?
  6. Diskriminant
    Quadratic_equation_discriminant Určite diskriminant rovnice: ?
  7. Nespojitosť
    graph_1 Určte bod, v ktorom funkcia sgn x nemá spojitosť.
  8. Rovnice
    rovnice x-2y+2z=-1 2x+y-z=3 3x+2y+z=2
  9. Dresy
    futball_ball_3 Tomáš má štyri futbalové dresy: červený, modrý, biely a zelený. Koľkými spôsobmi ich môže Tomáš poukladať na policu vedľa seba tak, aby červený a modrý dres boli susedné?
  10. Bonboniéra
    bonbons_2 V bonboniére je 12 bonbónov, ktoré vyzerajú rovnako. Tri z nich sú plnené nugátom, štyri orieškom a päť krémom. Najmenej koľko bonbónov musí Ivan vybrať, aby mal istotu, že vyberie dva s rovnakou plnkou? ?
  11. Traja strelci
    terc2_3 Traja strelci strieľajú, každý raz, na ten istý terč. Prvý zasiahne cieľ s pravdepodobnosťou 0,7; druhý s pravdepodobnosťou 0,8 a tretí s pravdepodobnosťou 0,9. Aká je pravdepodobnsť, že terč zasiahnu: a) práve raz b) aspoň raz c) aspoň dvakrát
  12. Rovnica
    calculator_2 Rovnica ? má jeden koreň x1=8. Určite koeficient b a druhý koreň x2.
  13. Rodinka
    family_2 Na loďke su dvaja synovia a dvaja otcovia aj keď chytili tri ryby každý dostal jednu . Ako je to možné?
  14. Trojice
    trojka Koľko rôznych trojíc možno vybrať zo skupiny 38 študentov?
  15. Cirkus
    cirkus Na cirkusovom predstavení bolo 150 ľudí. Mužov bolo o desať menej ako žien a detí o 50 viac ako dospelých. Koľko detí bolo v cirkuse?
  16. Rukavice 3
    rukavice_2 V zásuvke je 5 párov zelených a 6 párov modrých rukavíc uložených šiestackym spôsobom ( bez ladu a skladu). Koľko rukavíc musíš naslepo vybrať, aby bol vonku určite pár rovnakej farby?
  17. Polovica
    skola_9 Školu navštevuje 344 žiakov. Polovica z nich odoberá desiaty. 13 žiakov, ktorí odoberajú desiaty, neprišlo do školy. Koľko desiat zostalo?