# Sto známok

Je sto listových známok a stojí sto korún. Sú tam známky dvacaťhalierové, korunové, dvojkorunové a 5 korunové. Koľko je ktorých? Koľko má úloha riešení?

Výsledok

n =  66

#### Riešenie:

x1= 0.2*10 +1*85+2*4+5*1 = 100
x2= 0.2*15 +1*76+2*8+5*1 = 100
x3= 0.2*15 +1*79+2*4+5*2 = 100
x4= 0.2*20 +1*67+2*12+5*1 = 100
x5= 0.2*20 +1*70+2*8+5*2 = 100
x6= 0.2*20 +1*73+2*4+5*3 = 100
x7= 0.2*25 +1*58+2*16+5*1 = 100
x8= 0.2*25 +1*61+2*12+5*2 = 100
x9= 0.2*25 +1*64+2*8+5*3 = 100
x10= 0.2*25 +1*67+2*4+5*4 = 100
x11= 0.2*30 +1*49+2*20+5*1 = 100
x12= 0.2*30 +1*52+2*16+5*2 = 100
x13= 0.2*30 +1*55+2*12+5*3 = 100
x14= 0.2*30 +1*58+2*8+5*4 = 100
x15= 0.2*30 +1*61+2*4+5*5 = 100
x16= 0.2*35 +1*40+2*24+5*1 = 100
x17= 0.2*35 +1*43+2*20+5*2 = 100
x18= 0.2*35 +1*46+2*16+5*3 = 100
x19= 0.2*35 +1*49+2*12+5*4 = 100
x20= 0.2*35 +1*52+2*8+5*5 = 100
x21= 0.2*35 +1*55+2*4+5*6 = 100
x22= 0.2*40 +1*34+2*24+5*2 = 100
x23= 0.2*40 +1*37+2*20+5*3 = 100
x24= 0.2*40 +1*40+2*16+5*4 = 100
x25= 0.2*40 +1*43+2*12+5*5 = 100
x26= 0.2*40 +1*46+2*8+5*6 = 100
x27= 0.2*40 +1*49+2*4+5*7 = 100
x28= 0.2*45 +1*28+2*24+5*3 = 100
x29= 0.2*45 +1*31+2*20+5*4 = 100
x30= 0.2*45 +1*34+2*16+5*5 = 100
x31= 0.2*45 +1*37+2*12+5*6 = 100
x32= 0.2*45 +1*40+2*8+5*7 = 100
x33= 0.2*45 +1*43+2*4+5*8 = 100
x34= 0.2*50 +1*22+2*24+5*4 = 100
x35= 0.2*50 +1*25+2*20+5*5 = 100
x36= 0.2*50 +1*28+2*16+5*6 = 100
x37= 0.2*50 +1*31+2*12+5*7 = 100
x38= 0.2*50 +1*34+2*8+5*8 = 100
x39= 0.2*50 +1*37+2*4+5*9 = 100
x40= 0.2*55 +1*16+2*24+5*5 = 100
x41= 0.2*55 +1*19+2*20+5*6 = 100
x42= 0.2*55 +1*22+2*16+5*7 = 100
x43= 0.2*55 +1*25+2*12+5*8 = 100
x44= 0.2*55 +1*28+2*8+5*9 = 100
x45= 0.2*55 +1*31+2*4+5*10 = 100
x46= 0.2*60 +1*10+2*24+5*6 = 100
x47= 0.2*60 +1*13+2*20+5*7 = 100
x48= 0.2*60 +1*16+2*16+5*8 = 100
x49= 0.2*60 +1*19+2*12+5*9 = 100
x50= 0.2*60 +1*22+2*8+5*10 = 100
x51= 0.2*60 +1*25+2*4+5*11 = 100
x52= 0.2*65 +1*4+2*24+5*7 = 100
x53= 0.2*65 +1*7+2*20+5*8 = 100
x54= 0.2*65 +1*10+2*16+5*9 = 100
x55= 0.2*65 +1*13+2*12+5*10 = 100
x56= 0.2*65 +1*16+2*8+5*11 = 100
x57= 0.2*65 +1*19+2*4+5*12 = 100
x58= 0.2*70 +1*1+2*20+5*9 = 100
x59= 0.2*70 +1*4+2*16+5*10 = 100
x60= 0.2*70 +1*7+2*12+5*11 = 100
x61= 0.2*70 +1*10+2*8+5*12 = 100
x62= 0.2*70 +1*13+2*4+5*13 = 100
x63= 0.2*75 +1*1+2*12+5*12 = 100
x64= 0.2*75 +1*4+2*8+5*13 = 100
x65= 0.2*75 +1*7+2*4+5*14 = 100
x66= 0.2*80 +1*1+2*4+5*15 = 100

Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
Buďte prvý, kto napíše komentár!

#### Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?

1. Šesťciferné prvočísla
Nájdite všetky šesťciferné prvočísla, ktoré obsahujú každú z číslic 1,2,4,5,7 a 8 práve raz. Koľko ich je?
2. Prvočísla 2
Ktorými prvočíslami je deliteľné číslo 2025?
3. Po nastúpeni
Po nastúpeni do dvojstupu, trojstupu, štvorstupu a osemstupu nikto nezostal nezaradený. Koľko žiakov bolo na hodine telesnej výchovy?
4. Rok 2018
Súčin troch kladných čísel je 2018. Ktoré sú to čísla?
5. Z9 – I – 6 2018 MO
Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dvo
6. Z7–I–1 MO 2018
Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné č
7. Škola
Na školu chodí menej ako 500 žiakov. Keď sa zoradia do dvojíc, zostane 1. Rovnako tak pri zoradenie do 3, 4, 5 i 6. Až po zoradení po siedmich neostane ani jeden žiak. Koľko žiakov chodí na školu?
8. Deliteľnosť 2
Koľko deliteľov má prirodzené číslo 123?
9. Súčet dvoch prvočísel
Matematik Christian Goldbach zistil, že každé párne číslo väčšie ako 2 môže byť vyjadrené ako súčet dvoch prvočíselných čísel. Napíšte alebo vyjadrite 2018 ako súčet dvoch prvočísel.
10. Trieda
Keď sa Pytagora pýtali, koľko žiakov navštevuje jeho školu, odpovedal: "Polovica žiakov študuje matematiku, 1/4 hudbu, 1/7 mlčí a okrem toho sú v škole aj tri dievčatá". Koľko žiakov mal Pytagoras v škole?
11. Ciferné číslo
Je dané tisíc jedna ciferné číslo, ktoré sa skladá z opakujúcich sa číslic 123412341234.. ..Aký zvyšok dáva toto číslo pri delení deviatimi.
12. Ciferný súčet
Určte pre koľko prirodzených čísel väčších ako 900 a menších ako 1001 platí ze ciferný súčet ciferného súčtu ich ciferného súčtu je 1.
13. Balík
V balíku je menej ako 67 m látky. Ak budeme z nej strihať len na blúzky alebo len na šaty, nezostane nám žiadny zvyšok. Na jednu blúzu sa spotrebuje 3.8 m látky, na jedny šaty 1.7 m. Určte množstvo látky v balíku.
14. Autíčka
Pavel má zbierku autíčok. Chcel je novo usporiadať do skupín. Ale pri delení po troch, po štyroch, po šiestich i po ôsmich mu vždy jedno zostalo. Až keď tvoril skupiny po siedmich, rozdelil všetky. Koľko autíčok v zbierke?
15. Násobok - NSN
Najmenší násobok čísla 63 a 147
16. Tanečný súbor
Tanečný súbor nastúpil na javisko vo dvojiciach. Počas tanca tanečníci vytvárali postupne skupiny po štyroch, šiestich a deviatich. Kolko tanečníkov má súbor?