MO Z9–I–3 - 2017

Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozoberať, presne o 12:00 Hubert dokončil skladanie mlynčeka a Róbert rozoberanie iného. Celkom za túto zmenu pribudlo 70 mlynčekov. O 13:00 začal Róbert skladať a Hubert rozoberať, presne o 22:00 dokončil Róbert skladanie posledného mlynčeka a Hubert rozoberanie iného. Celkom za túto zmenu pribudlo 36 mlynčekov. Za ako dlho by zložili 360 mlynčekov, keby Róbert aj Hubert skladali spoločne?

Výsledok

h =  8
r =  16
t =  15 h

Riešenie:


70 = (r-h/4)*(12.00-7.00)
36 = (h-r/4)*(22.00-13.00)

5h-20r = -280
36h-9r = 144

h = 8
r = 16

Vypočítané naším kalkulátorom sústavy lineárnych rovníc.
Textové riešenie t =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 8 komentárov:
#1
Žiak
keď sa môžem spýtať, čo znamená
70 = (r-h/4)*(12.00-7.00)
36 = (h-r/4)*(22.00-13.00)

5h-20r = -280
-36h+9r = -144

#2
Dr Math
r = pocet mlynčekov ktore postavi za hodinu Robert
h = pocet mlynčekov ktore postavi za hodinu Hubert

a to dokopy sa vola sustava dvoch rovnic o dvoch neznamych... Da sa samozejme obist nejakou super uvahou, ale priamociare riesenie je taketo...

1 rok  3 Likes
#3
Žiak
Môžem sa opýtať?
Ako zistíme koľko za hodinu postavil mlynčekov?

1 rok  1 Like
#4
Anonym
70 = (r-h/4)*(12.00-7.00)
36 = (h-r/4)*(22.00-13.00)
to / 4 ide ako zlomkova čiara ?
ak ano vyšlo mi to uplne inak :D

#5
Dr Math
h-r/4 je klasicky v zmysle h - (r/4) a nie (h-r)/4

#6
Žiak
Dá sa to spraviť aj jednoduchšie?

#7
Žiak
Moja rec tak viac po lopate.

#8
Žiak
A hlavne ako dostaneme h a r

avatar









Chceš si vypočítať najmenší spoločný násobok dvoch alebo viacerých čísel? Chceš si vypočítať najväčší spoločný deliteľ dvoch alebo viacerých čísel? Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?

Ďaľšie podobné príklady:

  1. Hrnčeky
    hrnceky Teta kúpila 6 rovnakých hrnčekov a jednu kanvicu na kávu. Spolu zaplatila 60€. Kanvica bola drahšia ako jeden hrnček, ale lacnejšia ako dva hrnčeky. Teta si pamätala, že všetky ceny boli v celých eurách. Koľko € stál jeden hrnček a koľko kanvica?
  2. V hoteli 2
    hotel-montfort-tatry-2_2 V hoteli Holiday majú na každom poschodí rovnaký počet izieb. Izby sú číslované prirodzenými číslami postupne od prvého poschodia, žiadne číslo nie je vynechané a každá izba má iné číslo. Do hotela pricestovali traja turisti. Prvý sa ubytoval v izbe číslo.
  3. Úsečky
    segments Úsečky dĺžok 67 cm a 3.1 dm máme rozdeliť na rovnaké diely tak, aby ich dĺžka v centimetroch bola vyjadrená celým číslom. Koľkými spôsobmi ich môžeme deliť?
  4. Steny kvádra
    cuboid_9 Vypočítajte objem kvádra, ak jeho rôzne steny majú obsahy 195cm², 135cm² a 117cm².
  5. Predaje
    cukriky_9 Za 80 výrobkov dvojakej akosti sa utŕžilo celkom 175 Eur. Ak výrobok prvej kvality sa predával po n Eur za kus (n prirodzené číslo) a výrobok druhej akosti po dvoch Eur za kus, koľko kusov prvej kvality bolo predaných?
  6. MO - bikvadrát
    eq2_6 Nájdite najväčšie prirodzené číslo d, ktoré má tú vlastnosť, že pre ľubovoľné prirodzené číslo n je hodnota výrazu V(n)=n4+11n2−12 deliteľná číslom d.
  7. Stromčeky
    stromy_3 Sadár kúpil stromčeky za 960 KČ. Keby bol každý stromček o 12 KČ lacnejšie, bol by sadár za tie isté peniaze dostal o 4 stromčeky viac. Koľko stromčekov kúpil?
  8. Vypočítajte 5
    rt_triangle_1 Vypočítajte dĺžky strán a uhly v pravouhlom trojuholníku. S=210, o=70.
  9. MO Z8-I-1 2018
    age_6 Fero a Dávid sa denne stretávajú vo výťahu. Raz ráno zistili, že keď vynásobia svoje súčasné veky, dostanú 238. Keby to isté urobili za štyri roky, bol by tento súčin 378. Určte súčet súčasných vekov Fera a Dávida.
  10. Kvocient geometrickej
    geometricka-postupnost a1+a3=15 a1+a2+a3=21 Vypočítajte a1 a q(kvocient geometrickej postupnosti).
  11. Z7–I–5 MO 2018
    ruze_5 V záhradníctve Rose si jedna predajňa objednala celkom 120 ruží vo farbe červenej a žltej, druhá predajňa celkom 105 ruží vo farbe červenej a bielej a tretia predajňa celkom 45 ruží vo farbe žltej a bielej. Záhradníctvo zákazku splnilo, a to tak, že ruží r
  12. Tretiu s druhou
    sqrt_1 Máme 2 čísla. Keby sme vynásobili tretiu odmocninu prvého čísla s druhou odmocninou druhého čísla, dostali by sme číslo 18.Určte tieto 2 čísla. Ak má úloha v množine reálnych čísel nekonečne veľa riešení, vypočítajte len celočíselné riešenie.
  13. Ciferný súčet
    number_line_3 Ciferný súčet dvojciferného čísla je deväť. Keď čísla obrátime a vynásobíme pôvodným dvojciferným číslom, dostaneme číslo 2430. Aké je pôvodne dvojciferné číslo?
  14. Aritmetická postupnosť
    rt_triangle_2 Dĺžky strán pravouhlého trojuholníka s dlhšou odvesnou 12 cm tvoria aritmetickú postupnosť. Obsah trojuholníka je?
  15. Rýchlosť
    autosalon_2 Auto išlo do mesta vzdialeného 240 km. Keby sa jeho rýchlosť zvýšila o 8 km/h, došlo by do cieľa o hodinu skôr. Urči jeho pôvodn[ rýchlosť.
  16. Dvaja cyklisti
    cyclist_45 Súčasne dvaja cyklisti opustili mestá A a B pri konštantných rýchlostiach. Prvý z mesta A do mesta B a druhý z mesta B do mesta A. Na jednom mieste cesty sa stretli. Po stretnutí prvý cyklista prišiel do mesta B za 36 minút, druhý cyklista prišiel do mesta
  17. Práca a koláče
    eura_10 Jedna firma zamestnala študenta-vysokoškoláka na celý mesiac jún na farme tak, že mu platila 16 € spolu s celodennou stravou na jeden deň. Ak v daný deň nepracoval, musel zaplatiť 6 € za stravu. Koľko dní študent pracoval, ak za mesiac jún zarobil 348 € ?