Z9-I-5 MO 2017 obdlžník

Vnútri obdlžníka ABCD ležia body M a N. Strana AB je 22 cm a kružnica opísaná trojuholníku AND má polomer 10cm a úsečky MA, MD, MN, NB a NC sú navzájom zhodné. Určite dĺžku strany BC.

Výsledok

b =  16 cm

Riešenie:

Textové riešenie b =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 6 komentárov:
#1
Žiak
Sladial ste dostali r

#2
Žiak
Už nič dalujem

#3
Žiak
Čo presne je x?

#4
Dr Math
inymi slovami je trojuholnik AND rovnostranny s polomerom opisanej kruznice = r = 10 cm. Stred opisanej kruznice = tazisko je bod M. To vyplyva z toho poznatku ze AM=MN=MD. x je priemet bodu  M do usecky AB, tj. ako daleko je bod M v horizontalnom smere od bodu A. Potom tam vznikne pravouhly trojuholnik AMX, so dlzkami stran r (prepona), x a polovica neznamej strany b = (BC/2)

5 mesiacov  2 Likes
#5
Žiak
prosím vás ako vam s tou odmocninou vyšlo 16 lebo mne to žiadnym sposobom nevychadza

#6
Žiak #2
pretože 2 krát odmocnina z (10 na druhú - 6 na druhú) = 2 krát odmocnina zo (100 - 36) = 2 krát odmocnina zo 64 = 2 * 8 = 16

avatar









Pozrite aj našu kalkulačku pravouhlého trojuholníka. Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

Ďaľšie podobné príklady:

  1. MO Z9–I–1 2017
    age_4 Vekový priemer všetkých ľudí na oslave bol rovný počtu prítomných. Po odchode jednej osoby, ktorej bolo 29 rokov, bol vekový priemer zase rovný počtu prítomných. Koľko ľudí bolo pôvodne na oslave?
  2. MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozoberať
  3. Mo - kružnice
    mo Juro zostrojil štvorec ABCD so stranou 12 cm. Do tohto štvorca narysoval štvrťkružnicu k, ktorá mala stred v bode B a prechádzala bodom A, a polkružnicu l, ktorá mala stred v strede strany BC a prechádzala bodom B. Rád by ešte zostrojil kružnicu, ktorá by
  4. Bazén
    praded Objem vody v mestskom bazéne s obdĺžnikovým dnom je 6998,4 hektolitrov. Propagačný leták uvádza, že keby sme chceli všetku vodu z bazéna preliať do pravidelného štvorbokého hranola s podstavnou hranou rovnajúcu sa priemernej hĺbke bazénu, musel by byť hran
  5. Rovnoramenný lichobežník
    mo-klm Je daný rovnoramenný lichobežník ABCD, v ktorom platí: |AB| = 2 |BC| = 2 |CD| = 2 |DA|: Na jeho strane BC je bod K taký, že |BK| = 2 |KC|, na jeho strane CD je bod L taký, že |CL| = 2 |LD|, a na jeho strane DA je bod M taký, že |DM| = 2 |MA|. Určte veľkos
  6. Z9–I–1
    ctverec_mo Vo všetkých deviatich poliach obrazca majú byť vyplnené prirodzené čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použité aspoň raz, • štyri z polí vnútorného štvorca obsahujú súčiny čísel zo susediacich polí vonkajšieho štvorca, • v kruhu je súče
  7. MO - trojuholníky
    metal Na stranách AB a AC trojuholníka ABC leží postupne body E a F, na úsečke EF leží bod D. Přmky EF a BC sú rovnobežné a súčasne platí FD:DE = AE:EB = 2:1. Trojuholník ABC má obsah 27 hektárov a úsečkami EF, AD a DB je rozdelený na štyri časti. Určite obsahy.
  8. Z9–I–6 MRAK
    otaceni_ctverce Je daná úsečka AB dĺžky 12 cm, na ktorej je jednou stranou položený štvorec MRAK so stranou dĺžky 2 cm, viď obrázok. MRAK sa postupne preklápa po úsečke AB, pričom bod R zanecháva na papieri stopu. Narysujte celú stopu bodu R, kým štvorec nezaobíde úsečku.
  9. Betka
    numbers_2 Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu. Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a sklad
  10. Z9–I–2
    map_mo Z bodu A do bodu C vedie náučný chodník prechádzajúci bodom B a inakadiaľ tiež červená turistická značka, pozri obrázok. Okrem toho sa dá použiť aj nezakreslená skratka dlhá 1500 metrov začínajúca v A a ústiaca na náučnom chodníku. Vojtech zistil, že • vý
  11. Štvorcová sieť
    sit Štvorcová sieť sa skladá zo štvorca so stranou dĺžky 1cm. Narysujte do nej aspoň tri rôzne obrazce také, aby každý mal obsah 6 cm2 a obvod 12cm a aby ich strany splývali s priamkami siete.
  12. Osemsten súčet
    8sten Na každej stene pravidelného osemstenu je napísané jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, pričom na rôznych stenách sú rôzne čísla. Pri každej steny Janko určil súčet čísla na nej napísaného s číslami troch susedných stien. Takto dostal osem súčtov, ktoré.
  13. Pastevci
    ovce-miestami-baran Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?
  14. Pán Baran
    sheep Keď pán Baran zakladal chov, mal bielych ovcí o 8 viac nez čiernych. V súčasnosti má bielych ovcí štyrikrát viac ako na začiatku a čiernych trikrát viac ako na začiatku. Bielych oviec je teraz o 42 viac než čiernych. Koľko teraz pán Baran chová bielych a č
  15. Klávesy
    klavesy Miško mal na poličke malé klávesy, ktoré vidíte na obrázku. Na bielych klávesoch boli vyznačené ich tóny. Klávesy našla malá Klára. Keď ich brala z poličky, vypadli jej z ruky a všetky biele klávesy sa z nich vysypali. Aby sa brat nehneval, začala je Klára
  16. Osem kvádrov
    cuboids Dana mala za úlohu uložiť osem kvádrov podľa týchto pravidiel: 1. Medzi dvoma červenými kvádre musí byť jeden inej farby. 2. Medzi dvoma modrými musia byť dva iné farby. 3. Medzi dvoma zelenými musia byť tri inej farby. 4. Medzi dvoma žltými kvádre musia.
  17. Úžasné číslo
    numbers4 Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.