Z7-I-4 MO 2017

Na stole ležalo šesť kartičiek s ciframi 1, 2, 3, 4, 5, 6. Anežka z týchto kartičiek zložila šesťciferné číslo, ktoré bolo deliteľné šiestimi. Potom postupne odoberala kartičky sprava. Keď odobrala prvú kartičku, zostalo na stole päťciferné číslo deliteľné piatimi. Keď odobrala ďalšiu kartičku, zostalo štvorciferné číslo deliteľné štyrmi. Keď odoberala ďalej, získala postupne trojciferné číslo deliteľné tromi a dvojciferné číslo deliteľné dvoma. Ktoré šesťciferné číslo mohla Anežka pôvodne zložiť?

Určte všetky možnosti.

Výsledok

c1 =  123654
c2 =  321654

Riešenie:

Textové riešenie c1 =
Textové riešenie c2 =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Ďaľšie podobné príklady:

  1. Z7–I–6, výstava mačiek
    stoly Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka.
  2. Číselná os
    osa V kocúrskovskej škole používajú zvláštne číselnú os. Vzdialenosť medzi číslami 1 a 2 je 1 cm, vzdialenosť medzi číslami 2 a 3 je 3 cm, medzi číslami 3 a 4 je 5 cm, a tak ďalej, vzdialenosť medzi nasledujúce dvojicou prirodzenými číslami sa vždy zväčší o 2.
  3. Myška hryzka
    mouses Myška hryzka má 27 kociek, ktoré k sebe poskladala do veľkej kocky. Potom na každej strane vyhryzala prostrednú kocočku a ešte kocočku uprostred. Myška má 4 deti. Potom pozdĺžne kocku rozrieši. Koľko kociek a aký tvar dostanú 4 myšky?
  4. Ciferný súčet
    numbers_41 Určte pre koľko prirodzených čísel väčších ako 900 a menších ako 1001 platí ze ciferný súčet ciferného súčtu ich ciferného súčtu je 1.
  5. MO-I-Z6
    stvorec_4 Štvorec so stranou 4 cm je rozdelený na štvorčeky so stranou 1 cm ako na obrázku. Rozdeľte štvorec pozdĺž vyznačených čiar na dva útvary s obvodom 16 cm. Nájdite aspoň tri rôzne riešenia (tzn. také tri riešenia, aby žiadny útvar jedného riešenia nebol zhod
  6. Z7-I-4 hviezdičky 4949
    hviezdicky_mo Napíšte namiesto hviezdičiek, aby nasledujúci zápis súčinu dvoch čísel bol platný: ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 9 4 9 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗ ∗
  7. Symetria
    numbers3_3 Eva miluje symetriu v tvaroch aj číslach. Včera vymyslela úplne nový druh symetrie - deliteľnú symetriu. Napísala všetky päťciferné čísla s rôznymi číslicami s nasledujúcou vlastnosťou: prvá číslica je deliteľná číslom 1, druhá číslom 2, tretia číslom 3,
  8. Vreckovky
    harmasan Do obchodu dostali tri druhy vreckoviek - 132 detských, 156 dámskych a 204 pánskych. Vreckovky jednotlivých druhov boli balené do škatuliek po počte kusov rovnakom pre všetky tri druhy (a čo najväčším). Určite tento počet, ak viete, že v každej krabičke bo
  9. Deliteľné 12
    numbers2 Nahraďte písmená A a B číslicami tak, aby výsledné číslo x bolo deliteľné dvanástimi /všetky možnosti/. x = 2A3B Koľko je celkovo riešenie?
  10. Zvyšok
    numbers2_35 A je ľubovoľné prirodzené číslo, ktoré dáva pri delení číslom 6 zvyšok 1. B je ľubovoľné prirodzené číslo, ktoré dáva pri delení číslom 3 zvyšok 2. Aký zvyšok dáva pri delení tromi súčin čísel A. B?
  11. Stovky 2
    numbers_49 Napíšte, koľko je takých dvojcifernych čísel, ktoré ak vynásobíme štyrmi, tak dostaneme výsledok končiaci dvoma nulami.
  12. Ciferné číslo
    numbers2_33 Je dané tisíc jedna ciferné číslo, ktoré sa skladá z opakujúcich sa číslic 123412341234.. ..Aký zvyšok dáva toto číslo pri delení deviatimi.
  13. Štedrý deň
    stedryd V nepriestupnom roku bolo 53 nedieľ. Na aký deň týždňa pripadol Štedrý deň?
  14. Pachel cukríkov
    bonbons_3 V obchode majú 168 čokoládových cukríkov, 224 karamelových cukríkov a 196 tvrdých cukríkov. Koľko balíčkov môžeme urobiť a koľko mix cukríkov bude v každom balíčku?
  15. Rozklad čísla na súčin
    prime Zapíšte číslo 98 ako súčin prvočíselných činiteľov (faktorov).
  16. Dvojciferné číslo
    2digits Som dvojciferné číslo menšie ako 20. Keď ma vydeliš troma, potom dostaneš zvyšok 1, keď ma predelíš štyrmi, dostaneš tiež zvyšok 1. Ktoré číslo som?
  17. Vysvedčenie
    boy Na vysvedčení mala štvrtina žiakov triedy 9A trojku z matematiky, sedmina dvojku z českého jazyka a dvaja žiaci prepadli z chémie. Koľko žiakov chodí do 9A?