Pexeso

Papier na kreslenie má rozmery 60cm a 840 mm. Žiaci ho majú rozdeliť na rovnako veľké štvorce, aby z nich mohli vyrobiť pexeso. Aký rozmer môžu štvorca mať, ak ich strana má byť väčší ako 3cm a menšia ako 10 cm?

Výsledok

x1 =  60 mm
x2 =  40 mm

Riešenie:

Textové riešenie x1 =
Textové riešenie x2 =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Chcete premeniť jednotku dĺžky? Chceš si vypočítať najmenší spoločný násobok dvoch alebo viacerých čísel? Chceš si vypočítať najväčší spoločný deliteľ dvoch alebo viacerých čísel?

Ďaľšie podobné príklady:

  1. Steny kvádra
    cuboid_9 Vypočítajte objem kvádra, ak jeho rôzne steny majú obsahy 195cm², 135cm² a 117cm².
  2. Miestnosť - pokládka
    dlazdice_1 Miestnosť ma rozmer 12m a 5,6m. Určite počet štvorcových dlaždíc a ich najväčší rozmer, aby sa s nimi presne pokryla podlaha.
  3. Delenie laty
    ruler2_1 1. Lata 2,5 m, 2. Lata. .1,75 m. Koľko dielikov čo najväčších? Rozmer 1 dielika?
  4. Úsečky
    segments Úsečky dĺžok 67 cm a 3.1 dm máme rozdeliť na rovnaké diely tak, aby ich dĺžka v centimetroch bola vyjadrená celým číslom. Koľkými spôsobmi ich môžeme deliť?
  5. Višne
    visne Višne v miske môžu byť rozdelené rovnakým dielom medzi 8 alebo 10 alebo 11 detí. Koľko najmenej je v miske višní?
  6. MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozoberať
  7. Predaje
    cukriky_9 Za 80 výrobkov dvojakej akosti sa utŕžilo celkom 175 Eur. Ak výrobok prvej kvality sa predával po n Eur za kus (n prirodzené číslo) a výrobok druhej akosti po dvoch Eur za kus, koľko kusov prvej kvality bolo predaných?
  8. Práca a koláče
    eura_10 Jedna firma zamestnala študenta-vysokoškoláka na celý mesiac jún na farme tak, že mu platila 16 € spolu s celodennou stravou na jeden deň. Ak v daný deň nepracoval, musel zaplatiť 6 € za stravu. Koľko dní študent pracoval, ak za mesiac jún zarobil 348 € ?
  9. Pravouhlý trojuholník Alef
    r_triangle area pravouhlého trojuholníka je 294 cm2 a jeho prepona má dĺžku 35 cm. Aké sú dĺžky jeho odvesien?
  10. 3uholník obsah
    right_triangle_1 Vypočítajte obsah pravouhlého trojuholníka, ktorého dlhšia odvesna je o 6 dm kratšia ako prepona a o 3 dm dlhšia ako kratšia odvesna.
  11. Vypočítajte 5
    rt_triangle_1 Vypočítajte dĺžky strán a uhly v pravouhlom trojuholníku. S=210, o=70.
  12. Tretiu s druhou
    sqrt_1 Máme 2 čísla. Keby sme vynásobili tretiu odmocninu prvého čísla s druhou odmocninou druhého čísla, dostali by sme číslo 18.Určte tieto 2 čísla. Ak má úloha v množine reálnych čísel nekonečne veľa riešení, vypočítajte len celočíselné riešenie.
  13. MO - bikvadrát
    eq2_6 Nájdite najväčšie prirodzené číslo d, ktoré má tú vlastnosť, že pre ľubovoľné prirodzené číslo n je hodnota výrazu V(n)=n4+11n2−12 deliteľná číslom d.
  14. Hrnčeky
    hrnceky Teta kúpila 6 rovnakých hrnčekov a jednu kanvicu na kávu. Spolu zaplatila 60€. Kanvica bola drahšia ako jeden hrnček, ale lacnejšia ako dva hrnčeky. Teta si pamätala, že všetky ceny boli v celých eurách. Koľko € stál jeden hrnček a koľko kanvica?
  15. Ciferný súčet
    number_line_3 Ciferný súčet dvojciferného čísla je deväť. Keď čísla obrátime a vynásobíme pôvodným dvojciferným číslom, dostaneme číslo 2430. Aké je pôvodne dvojciferné číslo?
  16. Kvocient geometrickej
    geometricka-postupnost a1+a3=15 a1+a2+a3=21 Vypočítajte a1 a q(kvocient geometrickej postupnosti).
  17. Dlažba
    tiles_6 Pri dláždené bola kladená vedľa seba obdĺžniková dlažba 18cm × 24cm v jednom rade na dĺžku v druhom rade na šírku. Koľkokrát sa zídu škáry na vzdialenosť 10 m?