Pravdepodobnosti

Ak P(A) = 0.62 P(B) = 0.78 a P (A ∩ B) = 0.26, vypočítajte nasledovné
pravdepodobnosti (zjednotenia. prienikov, opačných javov a ich kombinácií):



Výsledok

P(A′) =  0.38
P(B′) =  0.22
P(A ∪ B) =  1.14
P(A′∩ B) =  0.52
P(A ∩ B′) =  0.36
P[( A ∪ B)′] =  -0.14
P( A′ ∪ B) =  0.64

Riešenie:

P(A′) = 1-0.62 = 0.38
P(B′) = 1-0.78 = 0.22
P(A ∪ B) = 0.62+0.78-0.26 = 1.14
P(A′∩ B) = 0.78-0.26 = 0.52
P(A ∩ B′) = 0.62-0.26 = 0.36
P[( A ∪ B)′] = 1-(0.62+0.78-0.26) = -0.14
P( A′ ∪ B) = 1-0.62+ 0.26 = 0.64







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Chceš si dať zrátať kombinačné číslo?

Ďaľšie podobné príklady:

  1. Lotéria
    lottery Fernando má dva žreby, každý z inej lotérie. V prvej lotérii je 973 000 žrebov a z nich vyhráva 687 000, v druhej lotérii je 1425 000 žrebov a z nich vyhráva 1102 000 žrebov. Aká veľká je pravdepodobnosť, že vyhrá aspoň jeden Fernando-ov žreb?
  2. Trieda
    kresba V triede je 60% chlapcov a 40% dievčat. Dlhé vlasy má 10% chlapcov a 80% dievčat. a) Aká je pravdepodobnosť, že náhodne vybraná osoba má dlhé vlasy? b) Vybraná osoba má dlhé vlasy. Aká je pravdepodobnosť, že je to dievča?
  3. Kábel
    tele Pretrhol sa telefónny kabel spájajúci miesta A, B vo vzdialenosti 2,5 km. Aka je pravdepodobnosť, ze sa to stalo vo vzdialenosti najviac 450 m od miesta A?
  4. Náhodná udalosť
    workers_7 Aká je pravdepodobnosť náhodnej udalosti, že zo spoločnosti 5 mužov a 7 žien ako prvý odišiel muž?
  5. Lotéria
    loto Aká je pravdepodobnosť že v lotérií, v ktorej sa žrebuje 5 čísel z 50 vyhráš prvú cenu?
  6. Trenky
    trenky Michal mal na výber modré, biele, červené, oranžové, čierne a hnedé trenky. Aká je pravdepodobnosť, že si vyberie práve modré trenky?
  7. Bonboniéra
    bonbons_2 V bonboniére je 12 bonbónov, ktoré vyzerajú rovnako. Tri z nich sú plnené nugátom, štyri orieškom a päť krémom. Najmenej koľko bonbónov musí Ivan vybrať, aby mal istotu, že vyberie dva s rovnakou plnkou? ?
  8. Gule v urne
    spheres_1 V urne je 8 bielych a 6 čiernych gulí. Náhodne vytiahneme 4 gule. Aká je pravdepodobnosť, že medzi nimi budú 2 biele?
  9. Slipy
    slipy Mám 3 farby slipov. Biele, čierne a červené. Aká je pravdepodobnosť, že vyberiem práve biele slipy?
  10. Tombola 9
    tombola_2 V tombole s jednou hlavnou cenou je 200 lístkov. Miško si kúpil 25 lístkov. Aká je pravdepodobnosť, že Miško nevyhrá hlavnú cenu?
  11. Slipy
    slipy_1 Natália šla do skrine vybrať Danielovi slipy. Daniel má v skrini 1 kus bielych slipov a 1 kus čiernych slipov. Aká je pravdepodobnosť, že mu Natália vytiahne biele slipy.
  12. Stara
    cukriky_12 Stara mama varila spolu bryndzove a tvarohove pirohy. Bryndzovych bolo 30, tvarohovych o 5 menej. Prvy si nabral Juraj a dostal 6 bryndzovych a 3 tvarohove. Aka je pravdepodobnost, je moj prvy piroh nebude bryndzovy?
  13. Generálny riaditeľ
    normal_dist Výpočtom rozhodnite koľko kandidátov z celkového počtu 1000 kandidátov na funkciu generálneho riaditeľa plní požiadavky spôsobilosti na žiaducemu výkone tejto top manažérske funkcie s aspoň 67% pravdepodobnosťou - samozrejme za predpokladu, že spôsobilosť.
  14. Nádoby 2
    gule_4 V prvej nádobe máme 3 biele a 6 čiernych guľôčok. V druhej nádobe máme 2 biele a 6 čiernych guľôčok. Z prvej nádoby náhodne preložíme do druhej nádoby 1 guľôčku. Aká je pravdepodobnosť, že potom z druhej nádoby vyberiem 2 biele guľôčky?
  15. Srdcia
    hearts_cards 4 kariet je vybraných ze štandardnej sady 52 hracích kariet (13 sŕdc) s vrátením. Aká je pravdepodobnosť, že vytiahneme 4 sŕdc po sebe?
  16. Aritmetická - ľahké
    seq_4 Určte diferenciu AP a doplňte tretí člen: 7; 3,6;. ..
  17. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?