Matematická olympiáda + úvaha - príklady a úlohy
Počet nájdených príkladov: 118
- Olympiády
Z 50 žiakov 44 riešilo aspoň jednu z olympiád - MO matematická olympiáda, BO biologická olympiáda. MO neriešilo 20 žiakov. Tých, čo riešili obidve olympiády, bola 1/3 z tých, čo riešili práve jednu olympiádu. Koľko žiakov riešilo len MO, len BO? Koľkí rie
- Matematická súťaž
V matematickej súťaži riešili jej účastníci dve úlohy. Každý vyriešil aspoň jednu úlohu, pritom prvú úlohu vyriešilo 80 % účastníkov, druhú úlohu 50 %. Obidve úlohy vyriešilo 60 účastníkov. Koľko účastníkov mala súťaž?
- Posledná cifra
Aké je posledné číslo 2016-tej mocniny čísla 2017?
- Rok 2018
Súčin troch kladných čísel je 2018. Ktoré sú to čísla?
- Z5 – I – 5
Tomáš dostal deväť kartičiek, na ktorých boli nasledujúce čísla a matematické symboly matematická olympiáda výsledky. 18, 19, 20, 20, +, -, x, (, ) Pozn. 4 čísla a operátory plus, mínus, krát, ľavá zátvorka, pravá zátvorka. Kartičky ukladal tak, že vedľa
- MO C–I–1 2018
Neznáme číslo je deliteľné práve štyrmi číslami z množiny {6, 15, 20, 21, 70}. Určite, ktorými.
- Šesťciferné prvočísla
Nájdite všetky šesťciferné prvočísla, ktoré obsahujú každú z číslic 1,2,4,5,7 a 8 práve raz. Koľko ich je?
- MO Z6-6-1
Do prázdnych polí v nasledujúcom obrázku doplňte celé čísla väčšie ako 1 tak, aby v každom tmavšom políčku bol súčin čísel zo susedných svetlejších políčok: Aké je číslo je v strede?
- Z5–I–4 MO 2019
Vojto začal vypisovať do zošita číslo terajšieho školského roku 2019202020192020. . . A tak pokračoval stále ďalej. Keď napísal 2020 cifier, prestalo ho to baviť. Koľko tak napísal dvojok?
- Hviezdičky - MO - Z5 - 66
Napíšte namiesto hviezdičiek cifry tak, aby súčet doplnených cifier bol nepárny a aby platila uvedená rovnosť: 42 · ∗8 = 2 ∗∗∗
- Pyramída Z8–I–6
Každá tehlička zobrazenej pyramídy obsahuje jedno číslo. Kedykoľvek to je možné, je číslo v každej tehličke najmenším spoločným násobkom čísel z dvoch tehličiek ležiacich priamo nad ňou. Ktoré číslo môže byť v najspodnejšej tehličke? Určite všetky možnost
- Z8-I-6 MO 2017
Priamka predstavuje číselnú os a vyznačené body zodpovedajú číslam a, −a, a + 1, avšak nie nutne v tomto poradí. Zostrojte body, ktoré zodpovedajú číslam 0 a 1. Preberte všetky možnosti.
- Bicykle
Si majiteľ dopravného ihriska. Kúp bicykle dvoch farieb ľubovoľného počtu, ale musíš minúť presne 120000Kč. Modrý bicykel stojí 3600Kč a červený bicykel stojí 3200Kč.
- C–I–4 MO 2017
Určte najväčšie celé číslo n, pri ktorom možno štvorcovú tabuľku n × n zaplniť prirodzenými číslami od 1 po n2 tak, aby v každej jej štvorcovej časti 3 × 3 bola zapísaná aspoň jedna druhá mocnina celého čísla
- Logický príklad
V trojposchodovom dome bývajú štyria chlapci. Každý býva na inom poschodí. Vieme o nich toto: - Jozef je filatelista - Viktor nebýva na najvyššom poschodí a nevie fotografovať - Ivan sa priatelí z fotoamatérom z prízemia - modelár z tretieho poschodia sa
- Zákusky Z8-I-5
Mamička doniesla 10 zákuskov troch druhov: kokosiek bolo menej ako laskonek a najviac bolo karamelových kociek. Jaro si vybral dva zákusky rôznych druhov, Štefan urobil to isté a na Marcelu ostali len zákusky rovnakého druhu. Koľko kokosiek, laskonek a ka
- Starý hodinár
Starý hodinár má vo svojej zbierke zvláštny digitálny budík, ktorý zvoní vždy, keď súčet cifier, ktorý budík ukazuje, sa rovná číslu 21. Zisti, v ktorých časoch bude budík zvoniť. Aký je ich počet? Vypíš všetky možnosti...
- Z5–I–1 MO 2018
Miška má päť pasteliek. Vojto ich má menej ako Miška. Vendelín ich má toľko, koľko Miška a Vojto spolu. Všetci traja spolu majú sedemkrát viac pasteliek, ako má Vojto. Koľko pasteliek má Vendelín?
- Lichobežník MO-5-Z8
Lichobežník ABCD je úsečkou CE rozdelený na trojuholník a rovnobežník, viď obrázok. Bod F je stredom úsečky CE, priamka DF prechádza stredom úsečky BE a obsah trojuholníka CDE je 3 cm2. Určte obsah lichobežníka ABCD.
- MAKS bežecká 2017
Mišo a Rišo behali po bežeckej dráhe tam a späť. Rozbehli sa oproti sebe, každý z iného konca dráhy. Obaja stále bežali rovnakou rýchlosťou, každý inou. Prvý raz sa stretli 800 m od jedného konca dráhy, druhý raz na druhom konci dráhy. Akú dĺžku má bežeck
Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož úlohu a my Ti ju skúsime vypočítať.
Matematická olympiáda - slovné úlohy a príklady. Úvaha - slovné úlohy a príklady.