Mnohouholník + matematická olympiáda - príklady a úlohy

Počet nájdených príkladov: 8

  • Z6-I-6 MO 2018
    12uholnik_1 V dvanásťuholníku ABCDEFGHIJKL sú každé dve susedné strany navzájom kolmé a všetky strany s výnimkou strán AL a GF sú navzájom zhodné. Strany AL a GF sú oproti ostatným stranám dvojnásobne dlhé. Úsečky BG a EL sa pretínajú v bode M a rozdeľujú dvanásťuhol
  • Z5 – I – 2 MO 2018
    triangle_7 Tereza dostala štyri zhodné pravouhlé trojuholníky so stranami dĺžok 3 cm, 4 cm a 5 cm. Z týchto trojuholníkov (nie nutne zo všetkých štyroch) skúšala skladať nové útvary. Postupne sa jej podarilo zložiť štvoruholníky s obvodom 14 cm, 18 cm, 22 cm a 26 cm
  • Z7–I–2 MO 2018
    12uholnik V dvanásťuholníku ABCDEFGHIJKL sú každé dve susedné strany navzájom kolmé a všetky strany s výnimkou strán AL a GF sú navzájom zhodné. Strany AL a GF sú oproti ostatným stranám dvojnásobne dlhé. Úsečky BG a EL sa pretínajú v bode M. Štvoruholník ABMJ má o
  • MO Z8–I–6 2018
    lich_1 V lichobežníku KLMN má základňa KL veľkosť 40 cm a základňa MN má velkosť 16 cm. Bod P leží na úsečke KL tak, že úsečka NP rozdeľuje lichobežník na dve časti s rovnakými obsahmi. Určte veľkosť úsečky KP.
  • Osemsten súčet
    8sten Na každej stene pravidelného osemstenu je napísané jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, pričom na rôznych stenách sú rôzne čísla. Pri každej steny Janko určil súčet čísla na nej napísaného s číslami troch susedných stien. Takto dostal osem súčtov, ktoré
  • Päťuholník
    5gon_1 Vo vnútri pravidelného päťuholníka ABCDE je bod P taký, že trojuholník ABP je rovnostranný. Aký veľký je uhol BCP? Urob si náčrtok.
  • Šesťuholník nepravidelný
    6uholnik_nepravidelny Na obrázku je štvorec ABCD, štvorec EFGD a obdĺžnik HIJD. Body J a G ležia na strane CD, pričom platí |DJ| < |DG| a body H a E ležia na strane DA, pričom platí /DH/ < /DE/. Ďalej vieme, že /DJ/ = /GC/. Šesťuholník ABCGFE má obvod 96 cm, šesťuholník EFG
  • Marienka - mo
    cukriky_4 Marienka rozmiestni do vrcholov pravidelného osemuholníka rôzne počty od jedného po osem cukríkov. Peter si potom môže vybrať, ktoré tri kôpky cukríkov dá Marienke, ostatné si ponechá. Jedinou podmienkou je, že tieto tri kôpky ležia vo vrcholoch rovnorame

Ospravedlňujeme sa, ale v tejto kategórií nie je veľa príkladov.
Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož úlohu a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.

Prosím nevkladajte súťažné úlohy z aktuálnych súťaží typu Matematická olympiáda, korenšpondenčné semináre Mal, matik.strom.sk, Pytagoriády atď .
Príklady na mnohouholník. Matematická olympiáda - príklady.