Prvočísla + matematická olympiáda - príklady a úlohy

  1. Snehulienka 2019 MO Z7
    snehulienka Snehulienka so siedmimi trpaslíkmi nazbierali šišky na táborák. Snehulienka povedala, že počet všetkých šišiek je číslo deliteľné dvoma. Prvý trpaslík prehlásil, že je to číslo deliteľné tromi, druhý trpaslík povedal, že je to číslo deliteľné štyrmi, tret
  2. MO Z9-I-6 2019
    triangles Kristína zvolila isté nepárne prirodzené číslo deliteľné tromi. Jakub s Dávidom potom skúmali trojuholníky, ktoré majú obvod v milimetroch rovný Kristínou zvolenému číslu a ktorých strany majú dĺžky v milimetroch vyjadrené navzájom rôznymi celými číslami.
  3. Matik - KSM
    vahy2 V kuchárskej knihe od Mateja Matemakaka sa písalo: najväčší spoločný deliteľ gramáže múky a gramáže cukru je 15, najväčší spoločný deliteľ gramáže cukru a gramáže citrónovej kôry je 6, súčin gramáže cukru a gramáže citrónovej kôry je 1800, najmenší spolo
  4. V Kocúrkove - Z8-I-6 2019 MO
    mince_1 V Kocúrkove používajú mince iba s dvoma hodnotami, ktoré sú vyjadrené v kocúrkovských korunách kladnými celými číslami. Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne
  5. MO Z8-I-2 2012
    numbers Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.
  6. MO C-I-3 2019
    numbers Určte všetky dvojice prirodzených čísel A a B, pre ktoré platí, že súčet dvojnásobku najmenšieho spoločného násobku a trojnásobku najväčšieho spoločného deliteľa prirodzených čísel A a B je rovný ich súčinu.
  7. Šesťciferné prvočísla
    numberline_1 Nájdite všetky šesťciferné prvočísla, ktoré obsahujú každú z číslic 1,2,4,5,7 a 8 práve raz. Koľko ich je?
  8. Rok 2018
    new_year Súčin troch kladných čísel je 2018. Ktoré sú to čísla?
  9. Z7–I–5 MO 2018
    ruze_5 V záhradníctve Rose si jedna predajňa objednala celkom 120 ruží vo farbe červenej a žltej, druhá predajňa celkom 105 ruží vo farbe červenej a bielej a tretia predajňa celkom 45 ruží vo farbe žltej a bielej. Záhradníctvo zákazku splnilo, a to tak, že ruží r
  10. MO C–I–1 2018
    numbers_49 Neznáme číslo je deliteľné práve štyrmi číslami z množiny {6, 15, 20, 21, 70}. Určite, ktorými.
  11. Z7–I–1 MO 2018
    numbers2_49 Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné č
  12. Z9 – I – 6 2018 MO
    numbers2_49 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dvo
  13. Z7–I–4 2018 MO Betka
    gears_mo Betka sa hrala s ozubenými kolesami, ktoré ukladala tak, ako je naznačené na obrázku. Keď potom zatočila jedným okolo, točili sa všetky ostatné. Nakoniec bola spokojná so súkolesím, pričom prvé koleso malo 32 a druhé 24 zubov. Keď sa tretie koleso otočilo
  14. Z7-1-6 MO 2017
    tanks_1 Vodník Chaluha nalieval hmlu do rozmanitých rôzne veľkých nádob ktoré si starostlivo zoradil na polici. Pri nalievaní postupoval postupne z jednej strany žiadnu nádobu nepreskakoval. Do každej nádoby sa vojde aspoň deciliter hmly. Keby nalieval hmlu sedeml
  15. Z5–I–6 MO 2017
    prime_1 Na stole ležalo osem kartičiek s číslami 2,3,5,7,11,13,17,19. Fero si vybral tri kartičky. Sčítal na nich napísané čísla a zistil, že ich súčet je o 1 väčší ako súčet čísel na zvyšných kartičkách. Ktoré kartičky mohli zostať na stole? Určte všetky možnosti
  16. Z7-I-4 MO 2017
    math_mo_2 Na stole ležalo šesť kartičiek s ciframi 1, 2, 3, 4, 5, 6. Anežka z týchto kartičiek zložila šesťciferné číslo, ktoré bolo deliteľné šiestimi. Potom postupne odoberala kartičky sprava. Keď odobrala prvú kartičku, zostalo na stole päťciferné číslo deliteľné
  17. Cukríky MO Z6-I-5 2017
    cukriky_10 V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?
  18. Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa čí
  19. MO Z8–I–3 - 2017 - Adelka
    numbers2_32 Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane naj
  20. MO Z7–I–3 2017
    zoo_2 Zoologická záhrada ponúkala školským skupinám výhodné vstupné: každý piaty žiak dostáva vstupenku zdarma. Pán učiteľ 6.A spočítal, že ak kúpi vstupné deťom zo svojej triedy, ušetrí za štyri vstupenky a zaplatí 19,95 €. Pani učiteľka 6.B mu navrhla, nech kú

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož ju a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.

Prosím nevkladajte súťažné úlohy z aktuálnych súťaží typu Matematická olympiáda, korenšpondenčné semináre Mal, matik.strom.sk, Pytagoriády atď .
Ide o to že chceme pomáhať, ale chodia nám upozornenia od organizátorov týchto súťaží, že pomáhame riešiteľom podvádzať. My sme sa snažili istiť vás ako horolezci, nie ťahať lanom na vrchol. Je pravda že hotové riešenie je už priveľká pomoc.

Správne riešenia súťažných úloh sa dozviete po skončení daného kola...