Prvočísla + úvaha - príklady a úlohy

  1. Tri linky
    clocks2 V 6 hodín ráno odchádzajú zo stanice 3 autobusové linky. Prvá linka má interval 24 minút. Druhá linka má interval 15 minút. Tretia linka jazdí v pravidelných intervaloch väčších ako 1 minúta. Tretia linka jazdí v rovnakom čase ako prvá, tiež v rovnakom čas
  2. Akú číslicu
    prime Akú číslicu doplniť namiesto hviezdičky 702*8, aby sme dostali čislo delitelné 6?
  3. Kanec Vavrínec - matik
    kanec V Starom Lese rastú len bylinky s 5 a 7 listami. Keď kanec Vavrínec zbiera suroviny na bylinný mok, tak vždy otrhne celú bylinku a položí ju do košíka. Aký je najväčší počet listov, ktoré sa mu nikdy nepodarí mať v košíku presne? Ako by to vyzeralo, keby v
  4. MO Z9-I-6 2019
    triangles Kristína zvolila isté nepárne prirodzené číslo deliteľné tromi. Jakub s Dávidom potom skúmali trojuholníky, ktoré majú obvod v milimetroch rovný Kristínou zvolenému číslu a ktorých strany majú dĺžky v milimetroch vyjadrené navzájom rôznymi celými číslami..
  5. MO Z8-I-2 2012
    numbers Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.
  6. Tanečná
    dancers Tanečná skupina vytvárala skupiny po 4, po 5 a po 6 tanečníkoch. Vždy jeden tanečník zostal. Koľko najmenej bolo tanečníkov v celej skupine?
  7. MO C-I-3 2019
    numbers Určte všetky dvojice prirodzených čísel A a B, pre ktoré platí, že súčet dvojnásobku najmenšieho spoločného násobku a trojnásobku najväčšieho spoločného deliteľa prirodzených čísel A a B je rovný ich súčinu.
  8. Podiel a zvyšok
    prime_5 Sú dané čísla C = 281, D = 201. Určite najvyššie prirodzené číslo S tak, aby podiely C:S, D:S boli so zvyškom 1,
  9. Deliteľnosť
    numbers2_49 Ak je 3c54d10 deliteľné číslom 330, aký je súčet c a d?
  10. Obdĺžniky
    rectangles_1 Koľko rôznych obdĺžnikov možno zostaviť zo 60 štvorcových dlaždíc s obsahom 1 m štvorcový. Určte rozmery týchto obdĺžnikov.
  11. MO C–I–1 2018
    numbers_49 Neznáme číslo je deliteľné práve štyrmi číslami z množiny {6, 15, 20, 21, 70}. Určite, ktorými.
  12. V hoteli
    clock-night-schr V hoteli,, U prevrátenej deviatky˝ je každé číslo hotelovej izby deliteľné 6. Koľko izieb vieš očíslovať trojciferným číslom zapísaným pomocou cifier 1,8,7,4,9?
  13. Kvetinárka
    ruze_6 Kvetinárka mala ráno 200 ruží. Počas dňa ich viac ako polovicu predala. Zo zvyšných ruží bude viazať kytice. Ak bude viazať kytice po 3, 4, 5 alebo 6 ružiach, vždy jej jedna zostane. Koľko ruží z rannej zásielky predala?
  14. Reštaurácia
    stolicky_skola_8_3 U neskrotného diviaka mali pred bitkou tridsať stolov označených prirodzenými číslami 2 až 31. Práve dva stoly patrili do salónika. Aby personál pri inventúre zistil, ktoré dva to sú, používal trik. Na dverách salónika bola tabuľka s číslom, ktoré nebolo d
  15. Matik - KSM
    vahy2 V kuchárskej knihe od Mateja Matemakaka sa písalo: najväčší spoločný deliteľ gramáže múky a gramáže cukru je 15, najväčší spoločný deliteľ gramáže cukru a gramáže citrónovej kôry je 6, súčin gramáže cukru a gramáže citrónovej kôry je 1800, najmenší spoloč
  16. Pomaranče
    pomaranc_2 Mamka rozdelila svojim trom deťom pomaranče v pomere 6:5:4. Dvom deťom dala 45 pomarančov. Koľko bolo všetkých pomarančov?
  17. Vystrihol som obdĺžniky
    rectangles2_2 Vystrihol som si dva obdĺžniky s obsahmi 54 cm², 90 cm². Ich strany sú vyjadrene celými číslami v centimetroch. Ak tieto obdĺžniky priložím k sebe, dostanem obdĺžnik s obsahom 144 cm². Aké rozmery môže mat tento veľký obdĺžnik? Napíš všetky možnosti. Svoj.
  18. V hoteli 3
    hotel_8 V hoteli je 27 postelí v niekoľkých izbách. Sú tu jednolôžkové, dvojlôžkové a trojlôžkové izby. Koľko môže byť v hoteli jednolôžkových, dvojlôžkových a trojlôžkových izieb? Uveď aspoň tri možnosti.
  19. Pyramída
    The_Great_Pyramid Koľko 50cm x 32cm x 30cm tehiel potrebujeme na postavenie 272m x 272m x 278m pyramídy?
  20. Cukríky MO Z6-I-5 2017
    cukriky_10 V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož ju a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.

Prosím nevkladajte súťažné úlohy z aktuálnych súťaží typu Matematická olympiáda, korenšpondenčné semináre Mal, matik.strom.sk, Pytagoriády atď .
Ide o to že chceme pomáhať, ale chodia nám upozornenia od organizátorov týchto súťaží, že pomáhame riešiteľom podvádzať. My sme sa snažili istiť vás ako horolezci, nie ťahať lanom na vrchol. Je pravda že hotové riešenie je už priveľká pomoc.

Správne riešenia súťažných úloh sa dozviete po skončení daného kola...