Trojuholník + úvaha - príklady a úlohy

  1. Hranica pozemku
    rt_triangle Pozemok má tvár pravouhlého trojuholníka s dĺžkou prepony 30m. Obvod pozemku je 72m. Akú dĺžku majú zostávajúce strany hranice pozemkov?
  2. Rovnobežky
    rs_triangle Vrcholy rovnostranného trojuholníka ležia na troch rôznych rovnobežkách. Prostredná je od krajných vzdialená 5 m, resp. 3 m. Vypočítajte výšku tohto trojuholníka.
  3. MO Z9 2019 domáce kolo
    triangles V trojuholníku ABC leží bod P v tretine úsečky AB (bližšie bodu A), bod R je v tretine úsečky PB (bližšie bodu P) a bod Q leží na úsečke BC tak, že uhly PCB a RQB sú zhodné. Určte pomer obsahov trojuholníkov ABC a PQC.
  4. Špeh a opilec
    equilateral_inside_square Po dlhom večeri vo vnútri salónika v tvare štvorca ABCD leží opitý kupec E tak, že trojuholník DEC je rovnostranný. Na hrane BC leží špeh F, pričom |EB|=|EF|. Aká je veľkosť uhla CEF?
  5. MO Z9-I-6 2019
    triangles Kristína zvolila isté nepárne prirodzené číslo deliteľné tromi. Jakub s Dávidom potom skúmali trojuholníky, ktoré majú obvod v milimetroch rovný Kristínou zvolenému číslu a ktorých strany majú dĺžky v milimetroch vyjadrené navzájom rôznymi celými číslami..
  6. Z8–I–5 MO 2019
    mo_z8_trojuhelniky Pre osem navzájom rôznych bodov ako na obrázku platí, že body C, D, E ležia na priamke rovnobežnej s priamkou AB, F je stredom úsečky AD, G je stredom úsečky AC a H je priesečníkom priamok AC a BE. Obsah trojuholníka BCG je 12 cm2 a obsah štvoruholníka DFH
  7. Z8 – I – 3 MO 2018
    kvietok2 Peter narysoval pravidelný šesťuholník, ktorého vrcholy ležali na kružnici dĺžky 16 cm. Potom pre každý vrchol tohto šesťuholníka narysoval kružnicu so stredom v tomto vrchole, ktorá prechádzala jeho dvoma susednými vrcholmi. Vznikol tak útvar ako na obr
  8. C-I-2 2018 MO
    lines_13 Na strane AB trojuholníka ABC sú dané body D a E tak, že |AD| = |DE| = |EB|. Body A a B sú postupne stredmi úsečiek CF a CG. Priamka CD pretína priamku FB v bode I a priamka CE pretína priamku AG v bode J. Dokážte, že priesečník priamok AI a BJ leží na pri
  9. Výšky trojuholníka
    trojuholnik_6 Strany trojuholníka ABC merajú 39 cm, 42 cm, 45 cm. Druhá najdlhšia výška tohto trojuholníka meria 36 cm. Aká je jeho najkratšia výška?
  10. Rovnobežne cyklista
    cyklo2 Pozorovateľ sedí v miestnosti 2 m od okna širokého 50 cm. Rovnobežne vo vzdialenosti 500 m vedie cesta. Akou veľkou priemernou rýchlosťou ide cyklista po tejto ceste, keď ho pozorovateľ vidí 15 s?
  11. Oblúkom prepojiť
    described_circle2 Železnica má prepojiť kruhovým oblúkom miesta A, B a C, ktorých vzdialenosti sú | AB | = 30 km, | AC | = 95 km, | BC | = 70 km. Akú dĺžku bude mať trať z A do C?
  12. Z9 – I – 2 MO 2018
    equliateral V rovnostrannom trojuholníku ABC je K stredom strany AB, bod L leží v tretine strany BC bližšie bodu C a bod M leží v tretine strany AC bližšie bodu A. Určte, akú časť obsahu trojuholníka ABC zaberá trojuholník KLM.
  13. Päť paličiek
    triangle_234_1 Päť paličiek má dĺžky 2,3,4,5,6 cm. Koľkými spôsobmi je možné vybrať tri paličky tak, aby tvorili tri strany trojuholníka?
  14. Na vrchole
    hrad Na vrchole hory stojí hrad, ktorý má vežu vysokú 30m. Križovatku ciest v údolí vidíme z vrcholu veže a od jej päty v hlbkovych uhloch 32°50' a 30°10'. Ako vysoko je vrchol hory nad križovatkou
  15. Máš čísla
    triangles_22 Máš čísla 4, 6, 9, 13, 15. Aká je pravdepodobnosť, že pri náhodne vybraté trojici to budú dĺžky strán trojuholníka? ( Uvažuj len rôznostranné trojuholníky. )
  16. MO-Z6-I-2 2017
    cokolada1 Erika chcela ponúknuť čokoládu svojim trom kamarátkam. Keď ju vytiahla z batohu, zistila, že je polámaná ako na obrázku. (Vyznačené štvorčeky sú navzájom zhodné. ) Dievčatá sa dohodli, že čokoládu ďalej lámať nebudú a lósom určia, aký veľký kúsok ktorá dos
  17. Z7–I–2 MO 2018
    12uholnik V dvanásťuholníku ABCDEFGHIJKL sú každé dve susedné strany navzájom kolmé a všetky strany s výnimkou strán AL a GF sú navzájom zhodné. Strany AL a GF sú oproti ostatným stranám dvojnásobne dlhé. Úsečky BG a EL sa pretínajú v bode M. Štvoruholník ABMJ má ob
  18. Z8-I-2 MO 2017
    klm1 V ostrouhlom trojuholníku KLM má uhol KLM veľkosť 68°. Bod V je priesečníkom výšok a P je pätou výšky na stranu LM. Os uhla P V M je rovnobežná so stranou KM. Porovnajte veľkosti uhlov MKL a LMK.
  19. Z6-I-6 MO 2018
    12uholnik_1 V dvanásťuholníku ABCDEFGHIJKL sú každé dve susedné strany navzájom kolmé a všetky strany s výnimkou strán AL a GF sú navzájom zhodné. Strany AL a GF sú oproti ostatným stranám dvojnásobne dlhé. Úsečky BG a EL sa pretínajú v bode M a rozdeľujú dvanásťuholn
  20. Z9-I-5 MO 2017 obdlžník
    flg Vnútri obdlžníka ABCD ležia body M a N. Strana AB je 22 cm a kružnica opísaná trojuholníku AND má polomer 10cm a úsečky MA, MD, MN, NB a NC sú navzájom zhodné. Určite dĺžku strany BC.

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož ju a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.

Prosím nevkladajte súťažné úlohy z aktuálnych súťaží typu Matematická olympiáda, korenšpondenčné semináre Mal, matik.strom.sk, Pytagoriády atď .
Ide o to že chceme pomáhať, ale chodia nám upozornenia od organizátorov týchto súťaží, že pomáhame riešiteľom podvádzať. My sme sa snažili istiť vás ako horolezci, nie ťahať lanom na vrchol. Je pravda že hotové riešenie je už priveľká pomoc.

Správne riešenia súťažných úloh sa dozviete po skončení daného kola...



Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku. Pozrite tiež informácií viac na Wikipédií.