Úvaha + matematická olympiáda - príklady a úlohy

Počet nájdených príkladov: 118

  • Klávesy
    klavesy Miško mal na poličke malé klávesy, ktoré vidíte na obrázku. Na bielych klávesoch boli vyznačené ich tóny. Klávesy našla malá Klára. Keď ich brala z poličky, vypadli jej z ruky a všetky biele klávesy sa z nich vysypali. Aby sa brat nehneval, začala je Klár
  • Zvonkohra MO - Z5 - 1 - 66
    Zvonkohra.JPG Zvonkohra na nádvorí hrá o každej celej hodine krátku skladbu, a to počínajúc 8. a končiac 22. hodinou. Skladieb je celkom osemnásť, o celej hodine sa hrá vždy iba jedna a po odohraní všetkých osemnástich sa začína v rovnakom poradí znova. Oľga a Ľuboš bo
  • Z9-I-4 2018 Hotelier
    stolicky_skola_8_1 Hotelier chcel vybaviť jedáleň novými stoličkami. V katalógu si vybral typ stoličky. Až pri zadávaní objednávky sa od výrobcu dozvedel, že v rámci zľavovej akcie ponúkajú každú štvrtú stoličku za polovičnú cenu a že teda oproti plánu môže ušetriť za sedem
  • V Kocúrkove - Z8-I-6 2019 MO
    mince_1 V Kocúrkove používajú mince iba s dvoma hodnotami, ktoré sú vyjadrené v kocúrkovských korunách kladnými celými číslami. Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne
  • Marienka - mo
    cukriky_4 Marienka rozmiestni do vrcholov pravidelného osemuholníka rôzne počty od jedného po osem cukríkov. Peter si potom môže vybrať, ktoré tri kôpky cukríkov dá Marienke, ostatné si ponechá. Jedinou podmienkou je, že tieto tri kôpky ležia vo vrcholoch rovnorame
  • C – I – 3 MO 2018
    olympics_10 Nech a, b, c sú kladné reálne čísla, ktorých súčet je 3, a každé z nich je nanajvýš 2. Dokážte, že platí nerovnosť: a2 + b2 + c2 + 3abc < 9
  • Z9 – I – 1 MO 2019
    oriesky Ondro, Maťo a Kubo sa vracajú zo zbierania orechov, dokopy ich majú 120. Maťo sa sťažuje, že Ondro má ako vždy najviac. Otec prikáže Ondrovi, aby prisypal zo svojho Maťovi tak, aby mu počet orechov zdvojnásobil. Teraz sa sťažuje Kubo, že najviac má Maťo.
  • MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozobera
  • Z7-1-6 MO 2017
    tanks_1 Vodník Chaluha nalieval hmlu do rozmanitých rôzne veľkých nádob ktoré si starostlivo zoradil na polici. Pri nalievaní postupoval postupne z jednej strany žiadnu nádobu nepreskakoval. Do každej nádoby sa vojde aspoň deciliter hmly. Keby nalieval hmlu sedem
  • Pán Cuketa
    cuketa Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n a
  • Zmenáreň
    exchange_rates V tabuľke je kurzový lístok zmenárne, avšak niektoré hodnoty sú v ňom nahradené otáznikmi. Zmenáreň vymieňa peniaze v uvedených kurzoch a neúčtuje si iné poplatky. nákup prodej 1 EUR 26,20 CZK 28,00 CZK 1 GBP b=? CZK c=? CZK 1. Koľko eur (a =?) dostane zá
  • MO Z8-I-1 2018
    age_6 Fero a Dávid sa denne stretávajú vo výťahu. Raz ráno zistili, že keď vynásobia svoje súčasné veky, dostanú 238. Keby to isté urobili za štyri roky, bol by tento súčin 378. Určte súčet súčasných vekov Fera a Dávida.
  • MO Z9–I–1 2017
    age_4 Vekový priemer všetkých ľudí na oslave bol rovný počtu prítomných. Po odchode jednej osoby, ktorej bolo 29 rokov, bol vekový priemer zase rovný počtu prítomných. Koľko ľudí bolo pôvodne na oslave?
  • Z9 – I – 6 2018 MO
    numbers2_49 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dv
  • Cukríky MO Z6-I-5 2017
    cukriky_10 V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?
  • MO Z8–I–5 - 2018
    murar_1 Kráľ dal murárovi Václavovi za úlohu postaviť múr hrubý 25 cm, dlhý 50 m a vysoký 2 m. Ak by Václav pracoval bez prestávky a rovnakým tempom, postavil by múr za 26 hodín. Podľa platných kráľovských nariadení však musí Václav dodržiavať následujúce podmien
  • MO 2019 Z5–I–3 Dukáty
    dukat Pán kráľ rozdával svojim synom dukáty. Najstaršiemu synovi dal určitý počet dukátov, mladšiemu dal o jeden dukát menej, ďalšiemu dal opäť o jeden dukát menej a takto postupoval až k najmladšiemu. Potom sa vrátil k najstaršiemu synovi, dal mu o jeden dukát
  • Betka
    numbers_2 Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu. Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a skla

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož úlohu a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.

Prosím nevkladajte súťažné úlohy z aktuálnych súťaží typu Matematická olympiáda, korenšpondenčné semináre Mal, matik.strom.sk, Pytagoriády atď .