Vyjadrenie neznámej zo vzorca + matematická olympiáda - príklady a úlohy

Počet nájdených príkladov: 16

  • MO - bikvadrát
    eq2_6 Nájdite najväčšie prirodzené číslo d, ktoré má tú vlastnosť, že pre ľubovoľné prirodzené číslo n je hodnota výrazu V(n)=n4+11n2−12 deliteľná číslom d.
  • Z5–I–1 MO 2018
    fixy_1 Miška má päť pasteliek. Vojto ich má menej ako Miška. Vendelín ich má toľko, koľko Miška a Vojto spolu. Všetci traja spolu majú sedemkrát viac pasteliek, ako má Vojto. Koľko pasteliek má Vendelín?
  • Z7–I–2 MO 2017
    rt_triangle_2 Dané sú dve dvojice rovnobežných priamok AB k CD a AC k BD. Bod E leží na priamke BD, bod F je stredom úsečky BD, bod G je stredom úsečky CD a obsah trojuholníka ACE je 20 cm2. Určte obsah trojuholníka DFG.
  • Z6–I–5 MO 2019
    krize Útvar na obrázku vznikol tak, že z veľkého kríža bol vystrihnutý malý kríž. Každý z týchto krížov môže byť zložený z piatich zhodných štvorcov, pričom strany malých štvorcov sú polovičné vzhľadom na strany veľkých štvorcov. Obsah sivého útvaru je 45 cm2.
  • MO Z6–I–1 - 2017 - Anička
    numbs_9 Anička a Blanka si napísali každá jedno dvojciferné číslo, ktoré začínalo sedmičkou. Dievčatá si zvolili rôzne čísla. Potom každá medzi obe cifry vložila nulu, takže im vzniklo trojciferné číslo. Od neho každá odčítala svoje pôvodné dvojciferné číslo. Výs
  • Z9 – I – 2 MO 2018
    equliateral V rovnostrannom trojuholníku ABC je K stredom strany AB, bod L leží v tretine strany BC bližšie bodu C a bod M leží v tretine strany AC bližšie bodu A. Určte, akú časť obsahu trojuholníka ABC zaberá trojuholník KLM.
  • Z7-1-3 MO 2018
    lieskovce_1 Dedo pripravil pre svojich šesť vnúčat kôpku lieskových orieškov s tým, nech si ich nejako rozoberú. Prvý prišiel Adam, odpočítal si polovicu, pribral si ešte jeden oriešok a odišiel. Rovnako sa zachoval druhý Bob, tretí Cyril, štvrtý Dano aj piaty Edo. I
  • MO-Z5-3-66
    stvorce Na obrázku je štvorcová dlaždica so stranou dĺžky 10 dm, ktorá je zložená zo štyroch zhodných obdĺžnikov a malého štvorca. Obvod malého štvorca je päťkrát menší ako obvod celej dlaždice. Určte rozmery obdĺžnikov.
  • Z9–I–3
    ball_floating_water Julke sa zakotúľala loptička do bazéna a plávala vo vode. Jej najvyšší bod bol 2 cm nad hladinou. Priemer kružnice, ktorú vyznačila hladina vody na povrchu loptičky, bol 8 cm. Určite priemer Julkynej loptičky.
  • Z6–I–2
    chodnik_1 Pán Kockorád vlastnil záhradu obdĺžnikového tvaru, na ktorej postupne dláždil chodníky z jednej strany na druhú. Chodníky boli rovnako široké, križovali sa na dvoch miestach a už vydláždená plocha sa pri ďalšom dláždení preskakovala. Keď pán Kockorád vydl
  • Z9-I-5 MO 2017 obdlžník
    flg Vnútri obdlžníka ABCD ležia body M a N. Strana AB je 22 cm a kružnica opísaná trojuholníku AND má polomer 10cm a úsečky MA, MD, MN, NB a NC sú navzájom zhodné. Určite dĺžku strany BC.
  • Z7-I-5 MO 2017
    triangle_1111_6 Prokop zostrojil trojuholník ABC, ktorého vnútorný uhol pri vrchole A bol väčší ako 60° a vnútorný uhol pri vrchole B bol menší ako 60°. Juraj narysoval v polrovine určenej priamkou AB a bodom C bod D, a to tak, že trojuholník ABD bol rovnostranný. Potom
  • Z9 – I – 5 MO 2018
    kruhy_mo Peter a Ivan vytvárali dekorácie z navzájom zhodných bielych kruhov. Peter použil štyri kruhy, ktoré položil tak, že sa každý dotýkal dvoch iných kruhov. Medzi ne potom vložil iný kruh, ktorý sa dotýkal všetkých štyroch bielych kruhov, a ten vyfarbil červ
  • C – I – 3 MO 2018
    olympics_10 Nech a, b, c sú kladné reálne čísla, ktorých súčet je 3, a každé z nich je nanajvýš 2. Dokážte, že platí nerovnosť: a2 + b2 + c2 + 3abc < 9
  • Z8–I–3 MO 2019
    bus27 Vendelín býva medzi dvoma zastávkami autobusu, a to v troch osminách ich vzdialenosti. Dnes vyrazil z domu a zistil, že či by utekal k jednej, alebo druhej zastávke, dorazil by na zastávku súčasne s autobusom. Priemerná rýchlosť autobusu je 60 km/h. Akou
  • MO Z9–I–1 2017
    age_4 Vekový priemer všetkých ľudí na oslave bol rovný počtu prítomných. Po odchode jednej osoby, ktorej bolo 29 rokov, bol vekový priemer zase rovný počtu prítomných. Koľko ľudí bolo pôvodne na oslave?

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož úlohu a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.

Prosím nevkladajte súťažné úlohy z aktuálnych súťaží typu Matematická olympiáda, korenšpondenčné semináre Mal, matik.strom.sk, Pytagoriády atď .