Trojuholník 20 20 30




Tupouhlý rovnoramenný trojuholník.

Strany: a = 20   b = 20   c = 30

Obsah trojuholníka: S = 198,43113483298
Obvod trojuholníka: o = 70
Semiperimeter (poloobvod): s = 35

Uhol ∠ A = α = 41,41096221093° = 41°24'35″ = 0,72327342478 rad
Uhol ∠ B = β = 41,41096221093° = 41°24'35″ = 0,72327342478 rad
Uhol ∠ C = γ = 97,18107557815° = 97°10'51″ = 1,6966124158 rad

Výška trojuholníka: va = 19,8433134833
Výška trojuholníka: vb = 19,8433134833
Výška trojuholníka: vc = 13,22987565553

Ťažnica: ta = 23,45220787991
Ťažnica: tb = 23,45220787991
Ťažnica: tc = 13,22987565553

Polomer vpísanej kružnice: r = 5,66994670951
Polomer opísanej kružnice: R = 15,11985789204

Súradnice vrcholov: A[30; 0] B[0; 0] C[15; 13,22987565553]
Ťažisko: T[15; 4,41095855184]
Súradnice stredu opísanej kružnice: U[15; -1,8989822365]
Súradnice stredu vpísanej kružnice: I[15; 5,66994670951]

Vonkajšie uhly trojuholníka:
∠ A' = α' = 138,59903778907° = 138°35'25″ = 0,72327342478 rad
∠ B' = β' = 138,59903778907° = 138°35'25″ = 0,72327342478 rad
∠ C' = γ' = 82,81992442185° = 82°49'9″ = 1,6966124158 rad

Vypočítať ďaľší trojuholník

Ako sme vypočítali tento trojuholník?


Teraz, ked vieme dĺžky všetkých troch strán trojuholníka, trojuholník je jednoznačne určený.
a=20 b=20 c=30

1. Obvod trojuholníka je súčtom dĺžok jeho troch strán

o=a+b+c=20+20+30=70

2. Polovičný obvod trojuholníka

Polovičný obvod trojuholníka (semiperimeter) je polovica z jeho obvodu. Polovičný obvod trojuholníka sa vo vzorcoch pre trojuholníky často vyskytuje tak, že mu bol pridelený samostatný názov (semiperimeter - poloobvod - s). Trojuholníkova nerovnosť hovorí, že najdlhšia dĺžka strany trojuholníka musí byť menšia ako semiperimeter.

s=2o=270=35

3. Obsah trojuholníka pomocou Herónovho vzorca

Herónov vzorec dáva obsah trojuholníka, keď sú známe dĺžky všetkých troch strán. Nie je potrebné najprv vypočítať uhly alebo iné vzdialenosti v trojuholníku. Herónov vzorec funguje rovnako dobre vo všetkých prípadoch a druhoch trojuholníkov.

S=s(sa)(sb)(sc) S=35(3520)(3520)(3530) S=39375=198,43

4. Výpočet výšiek trojuholníku z jeho obsahu.

Existuje veľa spôsobov, ako zistiť výšku trojuholníka. Najjednoduchší spôsob je zo vzorca, keď poznáme obsah a dĺžku základne. Plocha trojuholníka je polovicou súčinu dĺžky základne a výšky. Každá strana trojuholníka môže byť základňou; existujú teda tri základne a tri výšky. Výška trojuholníka je kolmá úsečka od vrcholu po priamku obsahujúcu základňu.

S=2ava  va=a2 S=202 198,43=19,84 vb=b2 S=202 198,43=19,84 vc=c2 S=302 198,43=13,23

5. Výpočet vnútorných uhlov trojuholníka pomocou kosínusovej vety

Kosínusová veta je užitočná pri hľadaní uhlov trojuholníka, keď poznáme všetky tri strany. Kosínusová veta spája všetky tri strany trojuholníka s uhlom trojuholníka. Kosínusová veta je extrapoláciou Pytagorovej vety pre akýkoľvek trojuholník. Pythagorova veta funguje iba v pravouhlom trojuholníku. Pythagorova veta je osobitným prípadom Kosínusovej vety a dá sa z neho odvodiť, pretože kosínus 90 ° je 0. Najlepšie je najskôr nájsť uhol oproti najdlhšej strane. V prípade kosínusovej vety neexistuje problém s tupými uhlami ako v prípade sínusovej vety, pretože funkcia kosínus je záporná pre tupé uhly, nulová pre pravé a kladná pre ostré uhly. Na určenie uhla z hodnoty kosínusu používame inverzný kosínus nazývaný arkuskosínus.

a2=b2+c22bccosα  α=arccos(2bcb2+c2a2)=arccos(2 20 30202+302202)=41°2435"  b2=a2+c22accosβ β=arccos(2aca2+c2b2)=arccos(2 20 30202+302202)=41°2435" γ=180°αβ=180°41°2435"41°2435"=97°1051"

6. Polomer vpísanej kružnice

Vpísaná kružnica v trojuholníku je kružnica (kruh), ktorý sa dotýka každej jeho strany. Všetky trojuholníky majú vpísanú kružnicu a jej stred vždy leží vo vnútri trojuholníka. Stred vpísanej kružnice je priesečník troch osí vnútorných uhlov (priesečník bisektorov). Súčin polomeru vpísanej kružnice a semiperimetru (polovice obvodu) trojuholníka je jeho plocha.

S=rs r=sS=35198,43=5,67

7. Polomer opísanej kružnice

Opísaná kružnica trojuholníka je kružnica, ktorá prechádza všetkými vrcholmi trojuholníka. Stred opísanej kružnice je bod, v ktorom sa pretínajú osi strán trojuholníka.

R=4 rsabc=4 5,669 3520 20 30=15,12

8. Výpočet ťažníc

Ťažnica (medián) trojuholníka je úsečka spájajúca vrchol so stredom protiľahlej strany. Každý trojuholník má tri ťažnice a všetky sa vzájomne pretínajú v ťažisku trojuholníka. Ťažisko rozdeľuje ťažnice na časti v pomere 2:1, pričom ťažisko je dvakrát bližšie k stredu strany ako protiľahlý vrchol. Apolloniusovu vetu používame na výpočet dĺžky ťažníc z dĺžok jeho strán.

ta=22b2+2c2a2=22 202+2 302202=23,452 tb=22c2+2a2b2=22 302+2 202202=23,452 tc=22a2+2b2c2=22 202+2 202302=13,229

Vypočítať ďaľší trojuholník