Päťuholník

Vo vnútri pravidelného päťuholníka ABCDE je bod P taký, že trojuholník ABP je rovnostranný. Aký veľký je uhol BCP?
Urob si náčrtok.

Výsledok

x =  66 °

Riešenie:

Textové riešenie x =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 1 komentár:
#1
Mo - Ofic
Nápoveda. Uvedomte si, že trojuholník BCP nie je obyčajný.

Možné riešenie. Päťuholník ABCDE je pravidelný, najmä platí | AB | = | BC |. Trojuholník ABP je rovnostranný, najmä platí | AB | = | BP |. Odtiaľ vidíme, že | BP | = | BC |, teda, že trojuholník BCP je rovnoramenný. Jeho vnútorné uhly pri vrcholoch P a C sú preto zhodné; na ich určenie stačí poznať uhol pri vrchole B (súčet veľkostí vnútorných uhlov v ľubovoľnom trojuholníku je 180◦). Pritom uhol P BC je rozdielom uhlov ABC a ABP, z ktorých prvá je vnútorným uhlom pravidelného päťuholníka (vyjadríme vzápätí) a druhý je vnútorným uhlom rovnostranného trojuholníka (má veľkosť α = 60◦).

Päťuholník ABCDE môžeme rozdeliť na päť trojuholníkov so spoločným vrcholom P. Súčet vnútorných uhlov päťuholníka je rovný súčtu vnútorných uhlov všetkých piatich trojuholníkov výnimkou uhlov pri vrchole P, tj. 5 · 180◦-360◦ = 540◦. V pravidelnom päťuholníka sú všetky vnútorné uhly zhodné, každý má teda veľkosť 540◦: 5 = 108◦.

Odtiaľ konečne vieme vyjadriť β = |uhol PBC | = |uhol ABC | - |uhol ABP | = 108◦ - 60◦ = 48◦ a následne γ = |uhol BCP | = |uhol BPC | = (180◦ - 48◦) / 2 = 66◦.

Veľkosť uhla BCP je 66◦.

Poznámka. Veľkosť vnútorného uhla pravidelného päťuholníka je možné odvodiť aj pomocou rozdelenia na päť zhodných rovnoramenných trojuholníkov ako na nasledujúcom obrázku (S je stred päťuholníka, tj. Stred jemu opísanej kružnice).

Uhol pri vrchole S v každom z týchto trojuholníkov má veľkosť 360: 5 = 72◦; súčet uhlov pri základni je rovný 180◦-72◦ = 108◦, čo je tiež veľkosť vnútorného uhla pravidelného päťuholníka.

avatar









Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku. Vyskúšajte si prevody jednotiek uhlov uhlové stupne, minúty, sekundy, radiány.

Ďaľšie podobné príklady:

  1. Vnútorné uhly
    triangle_5 Určte vnútorné uhly trojuholníka ABC, ak uhol pri vrchole C je dvakrát väčší ako uhol pri vrchole B a uhol pri vrchole B je o 4 stupne menší ako uhol pri vrchole A.
  2. Uhly
    colored-triangle V trojuholníku ABC je vnútorný uhol pri vrchole B o 10 stupňov väčší ako uhol pri vrchole A a uhol pri vrchole C je trikrát väčší ako uhol pri vrchole B. Vypočítajte veľkosti vnútorných uhlov trojuholníka.
  3. Alfa, beta, gama
    angles_in_triangle V trojuholníku ABC je veľkosť vnútorného uhla BETA o 8 stupňov väčšia ako veľkosť vnútorného ALFA uhla a veľkosť vnútorného uhla GAMA je dvakrát väčšia ako veľkosť uhla BETA. Určte veľkosti vnútorných uhlov trojuholníka ABC.
  4. Katka MO
    reporter_saved6 Katka narysovala trojuholník ABC. Stred strany AB si označila ako X a stred strany AC ako Y. Na strane BC chce nájsť taký bod Z, aby obsah štvoruholníka AXZY bol čo najväčší. Akú časť trojuholníka ABC môže maximálne zaberať štvoruholník AXZY?
  5. Domček Z9–I–5
    Mysky Myšky si postavili podzemný domček pozostávajúci z komôrok a tunelkov: • každý tunel vedie z komôrky do komôrky (tzn. žiadny nie je slepý), • z každej komôrky vedú práve tri tunely do troch rôznych komôrok, • z každej komôrky sa dá tunelom dostať do ktore
  6. Zostroj troj-ssu
    trojuhol Zostroj trojuholník ABC: | AB | = 5cm, va = 3cm, CAB = 50 °. Má sa urobiť rozbor, popis a konštrukcia.
  7. Ciferník hodín
    center_angle Zadaný je ciferník hodín. Čísla 10 a 5 a 3 a 8 sú spojené priamkami. Vypočítaj veľkosť ich uhlov.
  8. Pre trojuhoľníky
    podobnost_1 Pre trojuhoľníky ABC a A'B'C' platí: alfa = alfa s čiarou, beta s čiarou = beta. a) sú tieto trojuhoľníky zhodné? Prečo? b) sú tieto trojuhoľníky podobné? Prečo?
  9. Podobné trojuholníky
    podobnost_2 Trojuholníky ABC a A'B'C'. Sú podobné. V trojuholníku ABC sú veľkosti dvoch uhlov 25 stupňov 65 stupňov. Zdôvodni prečo v trojuholníku A'B'C' je súčet veľkosti dvoch uhlov rovný 90 stupňov
  10. Zostrojte
    troj Zostrojte trojuholník ABC, ak poznáte dĺžky jeho strán c = 5 cm, a = 4 cm a uhol ABC má ve¾kosť 60°. Odmerajte dĺžku strany b v milimetroch. Dĺžka strany b je: a, 75 mm < b < 81 mm b, 53 mm < b < 59 mm c, 43 mm < b < 49 mm d, 13 mm < b < 19 mm
  11. Tupý uhol
    10979326_654459541349455_1236723697_n Úsečka OH je výškou trojuholníka DOM, úsečka MN leží na osi uhla pri vrchole M. Tupý uhol medzi úsečkami OH a MN je štyri-krát väčší ako uhol DMN. Akú veľkosť má uhol DMO? (prikladám aj obrázok)
  12. Koeficient podobnosti 2
    trig12 Trojuholníky ABC a A"B"C" sú podobné koeficientom podobnosti 2 . Veľkosti uhlov trojuholníka ABC sú α= 35° a β= 48°. urči veľkosti všetkých uhlov trojuholníka A"B"C".
  13. Stredná priečka
    trianles Je pravda že stredná priečka rozpoľuje trojuholník?
  14. Z7–I–6, výstava mačiek
    stoly Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka.
  15. Číselná os
    osa V kocúrskovskej škole používajú zvláštne číselnú os. Vzdialenosť medzi číslami 1 a 2 je 1 cm, vzdialenosť medzi číslami 2 a 3 je 3 cm, medzi číslami 3 a 4 je 5 cm, a tak ďalej, vzdialenosť medzi nasledujúce dvojicou prirodzenými číslami sa vždy zväčší o 2.
  16. Lopta
    ball1_4 Lopta bol zlacnená o 10 percent a a potom znovu o 30 percent. Koľko percent pôvodnej ceny stojí teraz?
  17. Štartovné čísla
    ski_3 V žrebovacom zariadení sú štartovné čísla od 1 do 20. Aká je pravdepodobnosť, že si prvý žrebujúci pretekár v zjazdovom lyžovaní vyžrebuje štartovné číslo menšie ako 6?