Quadratic equation calculator

Quadratic equation has the basic form: ax2+bx+c=0
eq2
Enter the quadratic equation's coefficients a, b, and c of its basic standardized form. A solution of quadratic equations is usually two different real or complex roots or one double root — the calculation using the discriminant.


Calculation:

piD2/2+piD5112=0 1.5707963267949D2+15.708D112=0  a=1.570796;b=15.708;c=112 D=b24ac=15.708241.570796(112)=950.4568644313 D>0  D1,2=b±D2a=15.71±950.463.141593 D1,2=5±9.813328 D1=4.813328411 D2=14.813328411   Factored form of the equation:  1.5707963267949(D4.813328411)(D+14.813328411)=0 pi * D^2/2 + pi * D * 5 - 112 = 0 \ \\ 1.5707963267949D^2 +15.708D -112 =0 \ \\ \ \\ a=1.570796; b=15.708; c=-112 \ \\ D = b^2 - 4ac = 15.708^2 - 4 \cdot 1.570796 \cdot (-112) = 950.4568644313 \ \\ D>0 \ \\ \ \\ D_{1,2} = \dfrac{ -b \pm \sqrt{ D } }{ 2a } = \dfrac{ -15.71 \pm \sqrt{ 950.46 } }{ 3.141593 } \ \\ D_{1,2} = -5 \pm 9.813328 \ \\ D_{1} = 4.813328411 \ \\ D_{2} = -14.813328411 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ 1.5707963267949 (D -4.813328411) (D +14.813328411) = 0 \ \\

Solution in text:

1.5707963267949D2+15.707963267949D-112=0 ... quadratic equation

Discriminant:
D = b2 - 4ac = 950.4568644313
D > 0 ... The equation has two distinct real roots

D1 = 4.8133284
D2 = -14.8133284

P = {4.8133284; -14.8133284}