Complex number calculator
- Cis notation
Evaluate the multiplication of two complex numbers in cis notation: (6 cis 120°)(4 cis 30°) Write the result in cis and Re-Im notation.
- Circle's diameter
The diameter of a circle is 32 inches. What is the circle's area? Use π(pi) ≈ 3.14 and round your answer to the nearest hundredth.
- The formula
The formula for the area of a circle is (Pi x r x r), where r = measure of the radius and Pi = 3.14. What is the area of a circle whose radius measures 1 cm?
- Chebyshev formula
To estimate the number of primes less than x Chebyshev formula is used: Pi(x) = 1.11 (x)/(ln x). Estimate the number of primes less than 30300537.
- A cone 2
A cone has a slant height of 10 cm and a square curved surface area of 50 pi cm. Find the base radius of the cone.
- The volume 7
The volume of a cylindrical can is 75.36 in³. The diameter is 4 inches. Find the height. Use 3.14 as an estimation for pi.
- Largest circle
If the largest possible circle is cut off from a 8 cm × 4 cm rectangle, what is the area in sq cm of the remaining portion?
- Garden hose
Miguel wound a garden hose around a circular real. If the diameter of the real is 10 inches, how many inches of hose was wound on the first full turn of the real round? The answer to the nearest whole inch, use 3.14 for pi.
- Approximation of tangent fx
What is the nontrigonometric formula (not a polynomial fit) for the growth curve that solves algebraically for the increase between tan(1 degree) and tan(2 degrees) continuing up to the tangent(45 degrees)? Okay, to use pi Check calculation for 12°.
- Calculating 63344
Calculate the volume of the cone formed by rotating an isosceles triangle about the height of the base. The triangle has a side length of 15 cm and a height to the base of 12 cm. When calculating, use the value pi = 3.14 and round the result to one decima
- Distribution 73724
The distribution of the random variable X is given in the following table. Calculate P[X is odd], E[X] and P[1<X≤6] Probability distribution table: xi; 1; 2; 3 ; 4; 5; 6; 7; 8; 9 pi; 0.30; 0.12; 0.18; 0.10; 0.07; 0.07; 0.06; 0.05; 0.05
- A bakery
A bakery makes cylindrical mini muffins that measure 2 inches in diameter and one-fourth inches in height. If each mini muffin is completely wrapped in paper, how much paper is needed to wrap 6 mini muffins? Approximate using pi equals 22 over 7.
- Subtracting complex in polar
Given w =√2(cosine (pi/4) + i sine (pi/4) ) and z = 2 (cosine (pi/2) + i sine (pi/2) ). What is w - z expressed in polar form?
- The volume 6
The volume of a sphere is given by the formula 4/3 πr³ (or 4/3 *pi *r³). The value of pi is approximately equal to 3.14. What is the volume of a sphere whose radius is 4 cm? (Round of the answer to the nearest hundredths. Type the value without the unit)
- Calculate 8881
A solid wooden ball made of beech wood weighs 800 g. Calculate its diameter if the wood density is pi = 750 kg/m3
more math problems »
This calculator supports all operations with complex numbers and evaluates expressions in the complex number system.
You can use i (mathematics) or j (electrical engineering) as the imaginary unit, both satisfying the fundamental property i2 = −1 or j2 = −1.
Additionally, the calculator can convert complex numbers into:
Additionally, the calculator can convert complex numbers into:
- Angle notation (phasor notation)
- Exponential form
- Polar coordinates (magnitude and angle)
Complex numbers in the angle notation or phasor (polar coordinates r, θ) may you write as rLθ where r is magnitude/amplitude/radius, and θ is the angle (phase) in degrees, for example, 5L65 which is the same as 5*cis(65°).
Example of multiplication of two imaginary numbers in the angle/polar/phasor notation: 10L45 * 3L90.
For use in education (for example, calculations of alternating currents at high school), you need a quick and precise complex number calculator.
Example of multiplication of two imaginary numbers in the angle/polar/phasor notation: 10L45 * 3L90.
For use in education (for example, calculations of alternating currents at high school), you need a quick and precise complex number calculator.
Basic operations with complex numbers
We hope that working with the complex number is quite easy because you can work with imaginary unit i as a variable. And use the definition i2 = -1 to simplify complex expressions. Many operations are the same as operations with two-dimensional vectors.Addition
It is very simple: add up the real parts (without i) and add up the imaginary parts (with i):This is equal to use rule: (a+bi)+(c+di) = (a+c) + (b+d)i
(1+i) + (6-5i) = 7-4i
12 + 6-5i = 18-5i
(10-5i) + (-5+5i) = 5
Subtraction
Again it is very simple: subtract the real parts and subtract the imaginary parts (with i):This is equal to use rule: (a+bi)+(c+di) = (a-c) + (b-d)i
(1+i) - (3-5i) = -2+6i
-1/2 - (6-5i) = -6.5+5i
(10-5i) - (-5+5i) = 15-10i
Multiplication
To multiply two complex numbers, use distributive law, avoid binomials, and apply i2 = -1.This is equal to use rule: (a+bi)(c+di) = (ac-bd) + (ad+bc)i
(1+i) (3+5i) = 1*3+1*5i+i*3+i*5i = 3+5i+3i-5 = -2+8i
-1/2 * (6-5i) = -3+2.5i
(10-5i) * (-5+5i) = -25+75i
Division
The division of two complex numbers can be accomplished by multiplying the numerator and denominator by the denominator's complex conjugate. This approach avoids imaginary unit i from the denominator. If the denominator is c+di, to make it without i (or make it real), multiply with conjugate c-di:(c+di)(c-di) = c2+d2
c+dia+bi=(c+di)(c−di)(a+bi)(c−di)=c2+d2ac+bd+i(bc−ad)=c2+d2ac+bd+c2+d2bc−adi
(10-5i) / (1+i) = 2.5-7.5i
-3 / (2-i) = -1.2-0.6i
6i / (4+3i) = 0.72+0.96i
Absolute value or modulus
The absolute value or modulus is the distance of the image of a complex number from the origin in the plane. The calculator uses the Pythagorean theorem to find this distance. Very simple, see examples: |3+4i| = 5|1-i| = 1.4142136
|6i| = 6
abs(2+5i) = 5.3851648
Square root
The square root of a complex number (a+bi) is z, if z2 = (a+bi). Here ends simplicity. Because of the fundamental theorem of algebra, you will always have two different square roots for a given number. If you want to find out the possible values, the easiest way is to use De Moivre's formula. Our calculator is on edge because the square root is not a well-defined function on a complex number. We calculate all complex roots from any number - even in expressions:sqrt(9i) = 2.1213203+2.1213203i
sqrt(10-6i) = 3.2910412-0.9115656i
pow(-32,1/5)/5 = -0.4
pow(1+2i,1/3)*sqrt(4) = 2.439233+0.9434225i
pow(-5i,1/8)*pow(8,1/3) = 2.3986959-0.4771303i
Square, power, complex exponentiation
Our calculator can power any complex number to an integer (positive, negative), real, or even complex number. In other words, we calculate 'complex number to a complex power' or 'complex number raised to a power'...Famous example:
ii=e−π/2
i^2 = -1i^61 = i
(6-2i)^6 = -22528-59904i
(6-i)^4.5 = 2486.1377428-2284.5557378i
(6-5i)^(-3+32i) = 2929449.0399425-9022199.5826224i
i^i = 0.2078795764
pow(1+i,3) = -2+2i
Functions
- sqrt
- Square Root of a value or expression.
- sin
- the sine of a value or expression. Autodetect radians/degrees.
- cos
- the cosine of a value or expression. Autodetect radians/degrees.
- tan
- tangent of a value or expression. Autodetect radians/degrees.
- exp
- e (the Euler Constant) raised to the power of a value or expression
- pow
- Power one complex number to another integer/real/complex number
- ln
- The natural logarithm of a value or expression
- log
- The base-10 logarithm of a value or expression
- abs or |1+i|
- The absolute value of a value or expression
- phase
- Phase (angle) of a complex number
- cis
- is less known notation: cis(x) = cos(x)+ i sin(x); example: cis (pi/2) + 3 = 3+i
- conj
- the conjugate of a complex number - example: conj(4i+5) = 5-4i
Examples:
• cube root: cuberoot(1 - 27i)• roots of Complex Numbers: pow(1 + i,1/7)
• phase, complex number angle: phase(1 + i)
• cis form complex numbers: 5 * cis(45°)
• The polar form of complex numbers: 10L60
• complex conjugate calculator: conj(4 + 5i)
• equation with complex numbers: (z + i/2 )/(1 - i) = 4z + 5i
• system of equations with imaginary numbers: x - y = 4 + 6i; 3ix + 7y=x + iy
• De Moivre's theorem - equation: z ^ 4=1
• multiplication of three complex numbers: (1 + 3i)(3 + 4i)(−5 + 3i)
• Find the product of 3-4i and its conjugate.: (3 - 4i) * conj(3 - 4i)
• operations with complex numbers: (3 - i) ^ 3
Complex numbers in word problems:
- ReIm notation
Let z = 6 + 5i and w = 3 - i. Compute the following and express your answer in a + bi form. w + 3z
- Reciprocal
Calculate the reciprocal of z=0.8-1.8i:
- Conjugate equation
Find the numbers of a and b; if (a - bi) (3 + 5i) is the Conjugate of (-6 - 24i)
- The modulus
Find the modulus of the complex number 2 + 5i
- Eq2 equations
For each of the following problems, determine the roots of the equation. Given the roots, sketch the graph and explain how your sketch matches the roots given and the form of the equation: g(x)=36x²-12x+5 h(x)=x²-4x+20 f(x)=4x²-24x+45 p(x)=9x²-36x+40 g(x)
- Two grandmothers
Two grandmothers went to the market to sell eggs, and they had 100. When they sold all the eggs, they made the same money. The first grandmother said to the second, "If I sold my eggs for your price, I would earn 15 crowns. " The other grandmother replied
- Fifth 3871
What is the sum of the fifth root of 243?
more math problems »