Complex number calculator
There are 2 solutions, due to “The Fundamental Theorem of Algebra”. Your expression contains roots of complex numbers or powers to 1/n.
z1 = sqrt(10-6i) = 3.2910412-0.9115656i = 3.414953 × ei -0.2702098 = 3.414953 × ei (-0.0860104) π Calculation steps principal root
- Complex number: 10-6i
- Square root: sqrt(the result of step No. 1) = sqrt(10-6i) = √ 10-6i = 3.2910412-0.9115656i
The result z1
Rectangular form (standard form):
z = 3.2910412-0.9115656i
Angle notation (phasor):
z = 3.414953 ∠ -15°28'55″
Polar form:
z = 3.414953 × (cos (-15°28'55″) + i sin (-15°28'55″))
Exponential form:
z = 3.414953 × ei -0.2702098 = 3.414953 × ei (-0.0860104) π
Polar coordinates:
r = |z| = 3.414953 ... magnitude (modulus, absolute value)
θ = arg z = -0.2702098 rad = -15.48188° = -15°28'55″ = -0.0860104π rad ... angle (argument or phase)
Cartesian coordinates:
Cartesian form of imaginary number: z = 3.2910412-0.9115656i
Real part: x = Re z = 3.291
Imaginary part: y = Im z = -0.91156563
z = 3.2910412-0.9115656i
Angle notation (phasor):
z = 3.414953 ∠ -15°28'55″
Polar form:
z = 3.414953 × (cos (-15°28'55″) + i sin (-15°28'55″))
Exponential form:
z = 3.414953 × ei -0.2702098 = 3.414953 × ei (-0.0860104) π
Polar coordinates:
r = |z| = 3.414953 ... magnitude (modulus, absolute value)
θ = arg z = -0.2702098 rad = -15.48188° = -15°28'55″ = -0.0860104π rad ... angle (argument or phase)
Cartesian coordinates:
Cartesian form of imaginary number: z = 3.2910412-0.9115656i
Real part: x = Re z = 3.291
Imaginary part: y = Im z = -0.91156563
z2 = sqrt(10-6i) = -3.2910412+0.9115656i = 3.414953 × ei 2.8713829 = 3.414953 × ei 0.9139896 π Calculation steps
- Complex number: 10-6i
- Square root: sqrt(the result of step No. 1) = sqrt(10-6i) = √ 10-6i = -3.2910412+0.9115656i
The result z2
Rectangular form (standard form):
z = -3.2910412+0.9115656i
Angle notation (phasor):
z = 3.414953 ∠ 164°31'5″
Polar form:
z = 3.414953 × (cos 164°31'5″ + i sin 164°31'5″)
Exponential form:
z = 3.414953 × ei 2.8713829 = 3.414953 × ei 0.9139896 π
Polar coordinates:
r = |z| = 3.414953 ... magnitude (modulus, absolute value)
θ = arg z = 2.8713829 rad = 164.51812° = 164°31'5″ = 0.9139896π rad ... angle (argument or phase)
Cartesian coordinates:
Cartesian form of imaginary number: z = -3.2910412+0.9115656i
Real part: x = Re z = -3.291
Imaginary part: y = Im z = 0.91156563
z = -3.2910412+0.9115656i
Angle notation (phasor):
z = 3.414953 ∠ 164°31'5″
Polar form:
z = 3.414953 × (cos 164°31'5″ + i sin 164°31'5″)
Exponential form:
z = 3.414953 × ei 2.8713829 = 3.414953 × ei 0.9139896 π
Polar coordinates:
r = |z| = 3.414953 ... magnitude (modulus, absolute value)
θ = arg z = 2.8713829 rad = 164.51812° = 164°31'5″ = 0.9139896π rad ... angle (argument or phase)
Cartesian coordinates:
Cartesian form of imaginary number: z = -3.2910412+0.9115656i
Real part: x = Re z = -3.291
Imaginary part: y = Im z = 0.91156563
This calculator does basic arithmetic on complex numbers and evaluates expressions in the set of complex numbers.
As an imaginary unit, use i or j (in electrical engineering), which satisfies the basic equation i2 = −1 or j2 = −1. The calculator also converts a complex number into angle notation (phasor notation), exponential, or polar coordinates (magnitude and angle). Enter expression with complex numbers like 5*(1+i)(-2-5i)^2
Complex numbers in the angle notation or phasor (polar coordinates r, θ) may you write as rLθ where r is magnitude/amplitude/radius, and θ is the angle (phase) in degrees, for example, 5L65 which is the same as 5*cis(65°).
Example of multiplication of two imaginary numbers in the angle/polar/phasor notation: 10L45 * 3L90.
For use in education (for example, calculations of alternating currents at high school), you need a quick and precise complex number calculator.
Example of multiplication of two imaginary numbers in the angle/polar/phasor notation: 10L45 * 3L90.
For use in education (for example, calculations of alternating currents at high school), you need a quick and precise complex number calculator.
Basic operations with complex numbers
We hope that working with the complex number is quite easy because you can work with imaginary unit i as a variable. And use definition i2 = -1 to simplify complex expressions. Many operations are the same as operations with two-dimensional vectors.Addition
Very simple, add up the real parts (without i) and add up the imaginary parts (with i):This is equal to use rule: (a+bi)+(c+di) = (a+c) + (b+d)i
(1+i) + (6-5i) = 7-4i
12 + 6-5i = 18-5i
(10-5i) + (-5+5i) = 5
Subtraction
Again very simple, subtract the real parts and subtract the imaginary parts (with i):This is equal to use rule: (a+bi)+(c+di) = (a-c) + (b-d)i
(1+i) - (3-5i) = -2+6i
-1/2 - (6-5i) = -6.5+5i
(10-5i) - (-5+5i) = 15-10i
Multiplication
To multiply two complex numbers, use distributive law, avoid binomials, and apply i2 = -1.This is equal to use rule: (a+bi)(c+di) = (ac-bd) + (ad+bc)i
(1+i) (3+5i) = 1*3+1*5i+i*3+i*5i = 3+5i+3i-5 = -2+8i
-1/2 * (6-5i) = -3+2.5i
(10-5i) * (-5+5i) = -25+75i
Division
The division of two complex numbers can be accomplished by multiplying the numerator and denominator by the denominator's complex conjugate. This approach avoids imaginary unit i from the denominator. If the denominator is c+di, to make it without i (or make it real), multiply with conjugate c-di:(c+di)(c-di) = c2+d2
c+dia+bi=(c+di)(c−di)(a+bi)(c−di)=c2+d2ac+bd+i(bc−ad)=c2+d2ac+bd+c2+d2bc−adi
(10-5i) / (1+i) = 2.5-7.5i
-3 / (2-i) = -1.2-0.6i
6i / (4+3i) = 0.72+0.96i
Absolute value or modulus
The absolute value or modulus is the distance of the image of a complex number from the origin in the plane. The calculator uses the Pythagorean theorem to find this distance. Very simple, see examples: |3+4i| = 5|1-i| = 1.4142136
|6i| = 6
abs(2+5i) = 5.3851648
Square root
Square root of complex number (a+bi) is z, if z2 = (a+bi). Here ends simplicity. Because of the fundamental theorem of algebra, you will always have two different square roots for a given number. If you want to find out the possible values, the easiest way is to go with De Moivre's formula. Our calculator is on edge because the square root is not a well-defined function on a complex number. We calculate all complex roots from any number - even in expressions:sqrt(9i) = 2.1213203+2.1213203i
sqrt(10-6i) = 3.2910412-0.9115656i
pow(-32,1/5)/5 = -0.4
pow(1+2i,1/3)*sqrt(4) = 2.439233+0.9434225i
pow(-5i,1/8)*pow(8,1/3) = 2.3986959-0.4771303i
Square, power, complex exponentiation
Our calculator can power any complex number to an integer (positive, negative), real, or even complex number. In other words, we calculate 'complex number to a complex power' or 'complex number raised to a power'...Famous example:
ii=e−π/2
i^2 = -1i^61 = i
(6-2i)^6 = -22528-59904i
(6-i)^4.5 = 2486.1377428-2284.5557378i
(6-5i)^(-3+32i) = 2929449.0399425-9022199.5826224i
i^i = 0.2078795764
pow(1+i,3) = -2+2i
Functions
- sqrt
- Square Root of a value or expression.
- sin
- the sine of a value or expression. Autodetect radians/degrees.
- cos
- the cosine of a value or expression. Autodetect radians/degrees.
- tan
- tangent of a value or expression. Autodetect radians/degrees.
- exp
- e (the Euler Constant) raised to the power of a value or expression
- pow
- Power one complex number to another integer/real/complex number
- ln
- The natural logarithm of a value or expression
- log
- The base-10 logarithm of a value or expression
- abs or |1+i|
- The absolute value of a value or expression
- phase
- Phase (angle) of a complex number
- cis
- is less known notation: cis(x) = cos(x)+ i sin(x); example: cis (pi/2) + 3 = 3+i
- conj
- conjugate of complex number - example: conj(4i+5) = 5-4i
Examples:
• cube root: cuberoot(1-27i)• roots of Complex Numbers: pow(1+i,1/7)
• phase, complex number angle: phase(1+i)
• cis form complex numbers: 5*cis(45°)
• The polar form of complex numbers: 10L60
• complex conjugate calculator: conj(4+5i)
• equation with complex numbers: (z+i/2 )/(1-i) = 4z+5i
• system of equations with imaginary numbers: x-y = 4+6i; 3ix+7y=x+iy
• De Moivre's theorem - equation: z^4=1
• multiplication of three complex numbers: (1+3i)(3+4i)(−5+3i)
• Find the product of 3-4i and its conjugate.: (3-4i)*conj(3-4i)
• operations with complex numbers: (3-i)^3
Complex numbers in word problems:
- Determine 3882
Determine the sum of the three square roots of 343.
- Complex roots
Find the sum of the fourth square root of the number 16.
- Equation: 3726
Determine the real root of the equation: x^-3: x^-8 = 32
- Fifth 3871
What is the sum of the fifth root of 243?
- Subtract polar forms
Solve the following 5.2∠58° - 1.6∠-40° and give answer in polar form
- Let z 2
Let z = 2 - sqrt(3i). Find z6 and express your answer in rectangular form. if z = 2 - 2sqrt(3 i) then r = |z| = sqrt(2 ^ 2 + (- 2sqrt(3)) ^ 2) = sqrt(16) = 4 and theta = tan -2√3/2=-π/3
- Instantaneous 76754
For a dipole, calculate the complex apparent power S and the instantaneous value of the current i(t), given: R=10 Ω, C=100uF, f=50 Hz, u(t)= square root of 2, sin( ωt - 30 °). Thanks for any help or advice.
- ABS, ARG, CONJ, RECIPROCAL
Let z=-√2-√2i where i2 = -1. Find |z|, arg(z), z* (where * indicates the complex conjugate), and (1/z). Where appropriate, write your answers in the form a + i b, where both a and b are real numbers. Indicate the positions of z, z*, and (1/z) on an Argand
more math problems »