ABS, ARG, CONJ, RECIPROCAL

Let z=-√2-√2i where i2 = -1. Find |z|, arg(z), z* (where * indicates the complex conjugate), and (1/z). Where appropriate, write your answers in the form a + i b,
where both a and b are real numbers.
Indicate the positions of z, z*, and (1/z) on an Argand diagram.

Correct answer:

a =  2
φ =  0.7854
Φ =  45 °
c = -√2+√2i
d = -√2/4 + √2/4 i

Step-by-step explanation:

z = 22i = Re+ Im   i = x+y i  x=2=21.4142 y=2=21.4142  a = Re2 + Im2 a=x2+y2=(1.4142)2+(1.4142)2=2
tanφ=y:x=(1.4142):(1.4142)=1=1:1 φ=arctan(y/x)=arctan((1.4142)/(1.4142))=0.7854
Φ=φ  °=φ π180   °=0.7854 π180   °=45  °=45
c=conjz=xy i c=2+2i
d= 1/z d= x+i y1 = x+i y1  xi yxi y d = x2y2xi y  X=x2+y2x=(1.4142)2+(1.4142)2(1.4142)0.3536 Y=x2+y2y=(1.4142)2+(1.4142)2(1.4142)0.3536  d=2/4+2/4 i



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Try our complex numbers calculator.
See also our right triangle calculator.
See also our trigonometric triangle calculator.
Try conversion angle units angle degrees, minutes, seconds, radians, grads.

You need to know the following knowledge to solve this word math problem:

arithmeticplanimetricsnumbersgoniometry and trigonometryUnits of physical quantitiesGrade of the word problem

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: