# Area + area of shape - math problems

- Pentagonal prism

The regular pentagonal prism is 10 cm high. The radius of the circle of the described base is 8 cm. Calculate the volume and surface area of the prism. - Triangular prism

Calculate the surface of a regular triangular prism, the edges of the base are 6 cm long and the height of the prism is 15 cm. - Two sides paint

The door has the shape of a rectangle with dimensions of 260cm and 170cm. How many cans of paint will be needed to paint this door if one can of paint cover 2m2 of the area? We paint the doors on both sides. - Two hemispheres

In a wooden hemisphere with a radius r = 1, a hemispherical depression with a radius r/2 was created so that the bases of both hemispheres lie in the same plane. What is the surface of the created body (including the surface of the depression)? - Flakes

A circle was described on the square, and a semicircle above each side of the square was described. This created 4 "flakes". Which is bigger: the content of the central square or the content of four chips? - The bases

The bases of the isosceles trapezoid ABCD have lengths of 10 cm and 6 cm. Its arms form an angle α = 50˚ with a longer base. Calculate the circumference and content of the ABCD trapezoid. - Annulus from triangle

Calculate the content of the area bounded by a circle circumscribed and a circle inscribed by a triangle with sides a = 25mm, b = 29mm, c = 36mm - A map

A map with a scale of 1: 5,000 shows a rectangular field with an area of 18 ha. The length of the field is three times its width. The area of the field on the map is 72 cm square. What is the actual length and width of the field? - Garden exchange

The garden has the shape of a rectangular trapezoid, the bases of which have dimensions of 60 m and 30 m and a vertical arm of 40 m. The owner exchanged this garden for a parallelogram, the area of which is 7/9 of the area of a trapezoidal garden. What is - Rectangular land

On a rectangular land with dimensions of 35 m and 18.5 m is a house with a square floor plan with a side of 14 m. What % of the land is not occupied? - Compute 4

Compute the exact value of the area of the triangle with sides 14 mi, 12 mi, and 12 mi long. - Two gardens

The total area of the two gardens is 864 m^{2}. The first garden is 60 m^{2}smaller than three times the second garden. What is the area of each garden? - Playground

On the special playground, there are 81 square sectors, each with a side of 5 m. How many players can fit on the playground if each player needs a 75 m^{2}area to play? - Triangular prism

Calculate the surface of a triangular prism with the base of an equilateral triangle with a side length of 7.5 cm and a corresponding height of 6.5 cm. Prism height is 15cm. - Squares above sides

Two squares are constructed on two sides of the ABC triangle. The square area above the BC side is 25 cm^{2}. The height vc to the side AB is 3 cm long. The heel P of height vc divides the AB side in a 2: 1 ratio. The AC side is longer than the BC side. Calc - Two bodies

The rectangle with dimensions 8 cm and 4 cm is rotated 360º first around the longer side to form the first body. Then, we similarly rotate the rectangle around the shorter side b to form a second body. Determine the ratio of surfaces of the first and seco - Two 2D shapes

Decide which shapes have more area: (a) a square of 8cm side; or (b) two rectangles with sides 5cm and 15cm? Write result as 1 or 2 (rectangles) - Eq triangle minus arcs

In an equilateral triangle with a 2cm side, the arcs of three circles are drawn from the centers at the vertices and radii 1cm. Calculate the content of the shaded part - a formation that makes up the difference between the triangle area and circular cuts - The parabolic segment

The parabolic segment has a base a = 4 cm and a height v = 6 cm. Calculate the volume of the body that results from the rotation of this segment a) around its base b) around its axis. - Paint cans

How many paint cans do we need to paint the floor in two rooms with dimensions of 6.8m x 4.5m and 6m x3.8m? One can arefor 6m².

Do you have an interesting mathematical word problem that you can't solve it? Submit math problem, and we can try to solve it.