Kombinácie bez opakovania n=11, k=11 výsledok
Kalkulačka vypočíta koľkými rôznymi spôsobmi sa dajú vybrať k prvkov z množiny n prvkov. S/bez uvažovania poradia, s/bez opakovania. Vypočíta počet variácií, permutácií, kombinácií, variácií s opakovaním a kombinácií s opakovaním:Výpočet:
Ck(n)=(kn)=k!(n−k)!n! n=11 k=11 C11(11)=(1111)=11!(11−11)!11!=11=1
Počet kombinácií: 1
Trošku teórie - základy kombinatoriky
Variácie
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine (preto usporiadaná).Počet variácií vypočítame ľahko použitím kombinatorického pravidla súčinu. Ak máme napríklad množinu n=5 čísel 1,2,3,4,5 a máme urobiť variácie tretej triedy, bude ich V3(5) = 5*4*3 = 60.
Vk(n)=n(n−1)(n−2)...(n−k+1)=(n−k)!n!
n! voláme faktoriál čísla n a je to súčin prvých n prirodzených čísel. Zápis s faktoriálom je len prehľadnejší, ekvivalentný, pre výpočty je plne postačujúce používať postup vyplývajúci z kombinatorického pravidla súčinu.
Permutácie
Permutácia je synonymický názov pre variáciu n-tej triedy z n-prvkov. Je to teda každá n-prvková usporiadaná skupina vytvorená z n-prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine.P(n)=n(n−1)(n−2)...1=n!
Typický príklad je: Máme 4 knihy a koľkými spôsobmi ich môžme usporiadať vedľa seba v poličke?
Variácie s opakovaním
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorených z množiny n prvkov, pričom prvky sa môžu opakovať a záleží na ich poradí. Typickým príkladom je tvorenie čísel z číslic 2,3,4,5 a zistenie ich počtu. Ich počet podľa kombinatorického pravidla súčinu vypočítame:Vk′(n)=n⋅n⋅n⋅n...n=nk
Permutácie s opakovaním
Permutácia s opakovaním je usporiadaná k-prvková skupina z n-prvkov, pričom niektoré prvky sa opakujú v skupine. Opakovanie niektorých (alebo všetkých v skupine) znižuje počet takýchto permutácií s opakovaním.Pk1k2k3...km′(n)=k1!k2!k3!...km!n!
Typický príklad je zistiť koľko je sedemmiestnych čísel utvorených z číslic 2,2,2, 6,6,6,6.
Kombinácie
Kombinácia k-tej triedy z n prvkov je neusporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a nezáleži na poradí prvkov v skupine. Neusporiadané skupiny sa v matematike volajú množiny resp. podmnožiny. Ich počet je kombinačné číslo a vypočíta sa takto:Ck(n)=(kn)=k!(n−k)!n!
Typický príklad na kombinácie je že máme 15 žiakov a máme vybrať trojice. Koľko ich bude?
Kombinácie s opakovaním
Tu vyberáme k prvkové skupiny z n prvkov, pričom nezáleží na poradí a prvky sa môžu opakovať. k je logicky väčšie ako n (inak by sme dostali kombinácie obyčajné). Ich počet je:Ck′(n)=(kn+k−1)=k!(n−1)!(n+k−1)!
Vysvetlenie vzorca - počet kombinácii s opakovaním sa rovná počtu umiestnení n−1 oddeľovačov na n-1+k miest. Typický príklad je: ideme si do obchodu kúpiť 6 čokolád. V ponuke majú len 3 druhy. Koľko máme možností? k=6, n=3..
Základy kombinatoriky v slovných úlohách
- Kombinácie 2. triedy
Z koľko prvkov je možné vytvoriť 120 kombinácií druhej triedy? - Voľby
Vo voľbách kandiduje 7 politických strán. Vypočítajte koľkými možnými spôsobmi môžu výsledky volieb dopadnúť, ak žiadne dve strany nezískajú rovnaký počet hlasov. - Morseovka
Vypočítajte, koľko slov Morseovej abecedy je možné vytvoriť zostavením čiarok a bodiek do slova o jednom až štyroch znakoch. - Sad
V sade rastie 5 radov po 5 stromov . Koľko je v sade stromov? - Pravdepodobnosť javu
Pravdepodobnosť že nastane jav M pri 10 nezávislých pokusoch je 0,49. Aká je pravdepodobnosť, že jav M nastane pri jednom pokuse (ak pri každom pokuse je pravdepodobnosť rovnaká)? - Podmnožiny
Koľko je všetkých podmnožín množiny C = (50, 100, 45, 62)? - Priamky
V koľkých bodoch sa pretne 12 rôznych priamok, ak žiadne dve nie sú rovnobežné? - Pizza
Školský prieskum zistil, že 10 z 12 žiakom chutí pizza. Ak 6 študentov je vybraných náhodne, aká je pravdepodobnosť, že všetkým 6 študentom chutí pizza? - Pravdepodobnosti
Ak P(A) = 0,27 P(B) = 0,14 a P (A ∩ B) = 0,12, vypočítajte nasledovné pravdepodobnosti (zjednotenia. prienikov, opačných javov a ich kombinácií): - Minca a kocka
Hoď si mincou a potom sa hoď šesťstrannou kockou. Koľko možných kombinácií existuje? - Kino
Koľkými spôsobmi možno rozdeliť 11 voľných vstupeniek na premiéru filmu "Jáchyme hoď ho do stroje" medzi 6 dôchodkýň? - Kôpky
Anička má celkom 468 eurocentov. Peniaze musia rozdeliť na rôzny počet kôpok tak, aby na každej kupca bol rovnaký počet eurocentov. Koľko má možností? - Trojice
Koľko rôznych trojíc možno vybrať zo skupiny 41 študentov? - Týždenníci
V triede je 26 žiakov. Koľko možností má pani učiteľka, ak chce spomedzi žiakov vybrať náhodne dvoch, ktorí budú týždenníkmi? - Úloha roka
Stanovte počet prirodzených čísel od 1 do 106, ktoré končia štvorčíslím 2007.
slovné úlohy - viacej »
