Fraction calculator
This calculator subtracts two fractions. When fractions have different denominators, firstly convert all fractions to common denominator. Find Least Common Denominator (LCD) or simple multiply all denominators to find common denominator. When all denominators are same, simply subtract the numerators and place the result over the common denominator. Then simplify the result to the lowest terms or a mixed number.
Result:
2/3 - 3/4 = -1/12 ≅ -0.08333333
Spelled result in words is minus one twelfth.How do we solve fractions step by step?
- Subtract: 2/3 - 3/4 = 2 · 4/3 · 4 - 3 · 3/4 · 3 = 8/12 - 9/12 = 8 - 9/12 = -1/12
For adding, subtracting, and comparing fractions, it is suitable to adjust both fractions to a common (equal, identical) denominator. The common denominator you can calculate as the least common multiple of both denominators - LCM(3, 4) = 12. In practice, it is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 3 × 4 = 12. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words - two thirds minus three quarters is minus one twelfth.
Rules for expressions with fractions:
Fractions - use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) keep one space between the integer and
fraction and use a forward slash to input fractions i.e., 1 2/3 . An example of a negative mixed fraction: -5 1/2.
Because slash is both signs for fraction line and division, use a colon (:) as the operator of division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal point . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3^2
• cube of a fraction: 2/3^3
• exponentiation of a fraction: 1/2^4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• multiplying a fraction by a whole number: 6 * 3/4
• square root of a fraction: sqrt(1/16)
• reducing or simplifying the fraction (simplification) - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction: 4/22
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5 ÷ 2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order of operations are:
PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
BODMAS - Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.
GEMDAS - Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.
MDAS - Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.
Be careful; always do multiplication and division before addition and subtraction. Some operators (+ and -) and (* and /) has the same priority and then must evaluate from left to right.
Fractions in word problems:
- Package
The package was 23 meters of textile. The first day sold 12.3 meters. How many meters of textile remained in the package?
- Peter's calculation
Peter wrote the following: 7 1/4 - 3 3/4 = 4 2/4 = 4 1/2 . Is Peter’s calculation correct? Using words (math vocabulary) and numbers explain why he is correct or incorrect.
- Before 4
Before a journey, the petrol gauge showed my car's tank was half full. When I returned home it was one third full. What fraction of a tank of petrol had I used?
- Fraction expression
Which expression is equivalent to : minus 9 minus left parenthesis minus 4 start fraction 1 divided by 3 end fraction right parenthesis
- Bucket
Kim and Joey share a 30-ounce bucket of clay. By the end of the week, Kim has used 3/10 of the bucket, and Joey has used 3/5 of the bucket of clay. How many ounces are left in the bucket?
- King
King had four sons. First inherit 1/2, second 1/4, third 1/5 of property. What part of the property was left to the last of the brothers?
- The recipe
The recipe they are following requires 7/8 cups of milk, Tom already put 3/8 cups of milk. How much milk should Lea add to follow the recipe?
- Evaluate - lowest terms
Evaluate: 16/25 - 11/25 (Express answer as a fraction reduced to lowest terms. )
- Sadie
Sadie practiced her spelling words for 3/4 of an hour, and Max practiced his spelling words for 5/12 of an hour. In the simplest form, how much longer did Sadie practice than Max?
- Difference between fractions
What is the difference when you take away 1/6 from 2/8?
- The bread 2
Sandra and Tylar baked 2 loaves of bread. On Monday they ate 1/2 of one loaf. On Tuesday they ate 1/3 of one loaf of bread. How much bread was left?
more math problems »