Quadratic equation calculator

Quadratic equation has the basic form: ax2+bx+c=0
eq2
Enter the quadratic equation's coefficients a, b, and c of its basic standardized form. A solution of quadratic equations is usually two different real or complex roots or one double root — the calculation using the discriminant.


Calculation:

168=(50h)h/2 0.5h225h+168=0  a=0.5;b=25;c=168 D=b24ac=25240.5168=289 D>0  h1,2=b±D2a=25±2891=25±171 h1,2=25±17 h1=42 h2=8   Factored form of the equation:  0.5(h42)(h8)=0 168 = (50-h)*h/2 \ \\ 0.5h^2 -25h +168 =0 \ \\ \ \\ a=0.5; b=-25; c=168 \ \\ D = b^2 - 4ac = 25^2 - 4 \cdot 0.5 \cdot 168 = 289 \ \\ D>0 \ \\ \ \\ h_{1,2} = \dfrac{ -b \pm \sqrt{ D } }{ 2a } = \dfrac{ 25 \pm \sqrt{ 289 } }{ 1 } = 25 \pm 17 \sqrt{ 1 } \ \\ h_{1,2} = 25 \pm 17 \ \\ h_{1} = 42 \ \\ h_{2} = 8 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ 0.5 (h -42) (h -8) = 0 \ \\

Solution in text:

0.5h2-25h+168=0 ... quadratic equation

Discriminant:
D = b2 - 4ac = 289
D > 0 ... The equation has two distinct real roots

h1 = 42
h2 = 8

P = {42; 8}