# Metals

In the Hockey World Cup play eight teams, determine how many ways can they win gold, silver and bronze medals.

**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 0 comments:**

**Be the first to comment!**

#### To solve this example are needed these knowledge from mathematics:

## Next similar examples:

- Olympics metals

In how many ways can be win six athletes medal positions in the Olympics? Metal color matters. - Football league

In the 5th football league is 10 teams. How many ways can be filled first, second and third place? - Variations

Determine the number of items when the count of variations of fourth class without repeating is 42 times larger than the count of variations of third class without repetition. - Task of the year

Determine the number of integers from 1 to 10^{6}with ending four digits 2006. - Medals

In how many ways can be divided gold, silver and bronze medal among 21 contestant? - Chess

How many ways can select 4 fields on classic chess board with 64 fields, so that fields don't has the same color? - Cars plates

How many different licence plates can country have, given that they use 3 letters followed by 3 digits? - 2nd class variations

From how many elements you can create 6972 variations of the second class? - Area codes

How many 6 digit area codes are possible if the first number can't be zero? - Password dalibor

Kamila wants to change the password daliborZ by a) two consonants exchanged between themselves, b) changes one little vowel to such same great vowel c) makes this two changes. How many opportunities have a choice? - Neighborhood

I have 7 cups: 1 2 3 4 5 6 7. How many opportunities of standings cups are there if 1 and 2 are always neighborhood? - Combinatorics

The city has 7 fountains. Works only 6. How many options are there that can squirt ? - PIN - codes

How many five-digit PIN - code can we create using the even numbers? - Class pairs

In a class of 34 students, including 14 boys and 20 girls. How many couples (heterosexual, boy-girl) we can create? By what formula? - Tricolors

From the colors - red, blue, green, black and white, create all possible tricolors. - Components

In the box are 8 white, 4 blue and 2 red components. What is the probability that we pull one white, one blue and one red component without returning? - Theorem prove

We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?