Variations without repetition

Find out how many different ways you can choose k items from n items set. With/without repetition, with/without order.

(n)
(k)

Calculation:

Vk(n)=n!(nk)!  n=11 k=3  V3(11)=11!(113)!=11!8!=11109=990V_k(n) = \dfrac{n!}{(n - k)!} \ \\ \ \\ n = 11 \ \\ k = 3 \ \\ \ \\ V_{ 3} (11) = \dfrac{ 11!}{( 11 - 3)!} = \dfrac{ 11!}{ 8!} = 11 \cdot 10 \cdot 9 = 990

Number of variations: 990