Money duo

Julius and Mark have together 45 euros. Mark has 50% more money than Julius. Determine the amount of money that have Mark and Julius.

Result

j =  18
m =  27

Solution:

j+m=45
m = 1.50 j

j+m = 45
1.5j-m = 0

j = 18
m = 27

Calculated by our linear equations calculator.

Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...): Be the first to comment! To solve this verbal math problem are needed these knowledge from mathematics:

Do you have a system of equations and looking for calculator system of linear equations?

Next similar math problems:

1. Euros Peter, Jane and Thomas have together € 550. Tomas has 20 euros more than Jane, Peter € 150 less than Thomas. Determine how much has each of them.
2. Coins In ticket maschine were together one hundred coins. They were only 20 and 50 cent coins. The sum total was 29 euros and 60 cents. How many were in ticket maschine coins and which type?
3. 3 masons 3 masons received 7,700 CZK. The second half received 1/2 more than the first and third twice more than the second mason. How much they each got crowns?
4. Stamps 2 Dennis spent 34.15 on stamps. The number of .56 is 10 less than four times of stamps bought for .41. How many of each stamp did he buy?
5. Tour 35 people went on a tour and paid 8530, -. Employees pay 165, and family members 310. How many employees and how many family members went to the tour?
6. Sweets 3 chocolate and 7 cakes cost 85, - CZK. 2 chocolates and 6 cakes cost 86, - CZK. How much is 5 chocolates and 9 cakes? I wonder how to get the result, but only by logic without the use of a system of equations
7. On the 4 On the way to playing disc golf with his two boys, Mr. Smith purchases 3 muffins and 2 bottles of water, totaling \$9.75. The following week he only has Asher with him, so he purchases 2 muffins and 1 bottle of water totalling \$6.00. What is the cost of on
8. Three brothers The three brothers have a total of 42 years. Jan is five years younger than Peter and Peter is 2 years younger than Michael. How many years has each of them?
9. Two numbers We have two numbers. Their sum is 140. One-fifth of the first number is equal to half the second number. Determine those unknown numbers.
10. Mushrooms Eva and Jane collected 114 mushrooms together. Eve found twice as much as Jane. How many mushrooms found each of them?
11. Theatro Theatrical performance was attended by 480 spectators. Women were in the audience 40 more than men and children 60 less than half of adult spectators. How many men, women and children attended a theater performance?
12. The dormitory The dormitory accommodates 150 pupils in 42 rooms, some of which are triple and some are quadruple. Determine how many rooms are triple and how many quadruples.
13. Trees Along the road were planted 250 trees of two types. Cherry for 60 CZK apiece and apple 50 CZK apiece. The entire plantation cost 12,800 CZK. How many was cherries and apples?
14. Equations - simple Solve system of linear equations: x-2y=6 3x+2y=4
15. Equations Solve following system of equations: 6(x+7)+4(y-5)=12 2(x+y)-3(-2x+4y)=-44
16. Hotel rooms In the 45 rooms, there were 169 guests, some rooms were three-bedrooms and some five-bedrooms. How many rooms were?
17. Linear system Solve this linear system (two linear equations with two unknowns): x+y =36 19x+22y=720