Square root - math word problems - page 13 of 63
Number of problems found: 1246
- Gradient of the railway
Calculate the gradient of the railway line, which has an elevation of 22.5 meters in a section of 1.5 kilometers. For railways, the result is given in h (per mille).
- Right-angled 81359
The paths in the park form a right-angled triangle, which on the map with a scale of 1:200 has two dimensions of side lengths of 9cm and 15cm. Grandma walks this route every day for a health walk. How many meters does she walk?
- Slant surface
The surface of the rotating cone and its base area is in the ratio 18:5. Determine the volume of the cone if its body height is 12 cm.
- Square 81238
A forest with a square plan has an area of 4 square km. What side will the square have on a 1:50,000 scale map?
- Equilateral 81222
A sphere is inscribed in an equilateral cone with a base diameter of 12 cm. Calculate the volume of both bodies. What percentage of the volume of the cone is filled by the inscribed sphere?
- Millimeter 81208
A cylinder has the same diameter as its height. Calculate these data if the surface is 200 cm square. Report the results to the nearest millimeter.
- Millimeter 81160
Calculate the length of the side of the cone; they rounded the result to tenths of a millimeter. If you know: radius 24 mm and height 46 mm
- Equilateral 81142
The rotating body was created by rotating an equilateral triangle with a side length of a=2 cm around one of its sides. Calculate the volume of this rotating body.
- Hypotenuse, euclid
In a right-angled triangle, the hypotenuse has a length of 24 cm. The heel of the height on the hypotenuse divides it into two parts in a ratio of 2:4. What size in cm is the height at the hypotenuse? Calculate the perimeter of this right triangle in cent
- Quadrilateral 81097
The quadrilateral ABCD is symmetrical about the diagonal AC. The length of AC is 12 cm, the length of BC is 6 cm, and the interior angle at vertex B is right. points E and F are given on the sides AB, and AD so that the triangle ECF is equilateral. Determ
- Circumference of edges
The hexagon pyramid has a circumference of 120 cm, and the length of the side edge is 25 cm. Calculate its volume.
- Corresponds 81049
Cyril marked a square plot of land on a map with a scale of 1 ∶ 50,000 and calculated that its side corresponds to 1 km. He reduced the map on the copier so that the marked square had an area smaller by 1.44 cm² than on the original map. What was the scal
- Calculate 81034
Calculate the volume of the spherical segment and the surface area of the canopy if the radius of the sphere is r=5cm and the radius of the circular base of the segment ρ=4cm.
- Quadrilateral 81033
The foundations of a regular truncated quadrilateral pyramid are squares. The lengths of the sides differ by 6 dm. Body height is 7 dm. The body volume is 1813 dm³. Calculate the lengths of the edges of both bases.
- Circumscribed - sphere
A cube with a volume of 4096 cm³ is described and inscribed by a sphere. Calculate how many times the volume of the circumscribed sphere is greater than the inscribed sphere.
- Right-angled 81019
In the right-angled triangle ABC (AB is the hypotenuse), a : b = 24 : 7, and the height to the side c = 12.6 cm applies. Calculate the lengths of the sides of triangle ABC.
- Respectively 80982
The vertices of the square ABCD are joined by the broken line DEFGHB. The smaller angles at the vertices E, F, G, and H are right angles, and the line segments DE, EF, FG, GH, and HB measure 6 cm, 4 cm, 4 cm, 1 cm, and 2 cm, respectively. Determine the ar
- Cross-sectional 80979
An undisciplined motorcyclist drove at an unreasonable speed on a mountain road, lost control in a bend, and left the roadway at 90 km/h. He was falling into a gully 36 m deep. Draw a cross-sectional picture of the whole situation. How far did the motorcy
- The perimeter
The perimeter of the base of a regular quadrilateral pyramid is the same as its height. The pyramid has a volume of 288 dm³. Calculate its surface area round the result to the whole dm².
- SKMO
Petra had written natural numbers from 1 to 9. She added two of these numbers, deleted them, and wrote the resulting sum instead of the summaries. She thus had eight numbers written down, which she managed to divide into two groups with the same product.
Do you have unsolved problem that you need help? Ask a question, and we will try to solve it. Solving math problems.