Fraction calculator
This fractions calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step informations.
The result:
1 1/2 * 3 1/2 = 21/4 = 5 1/4 = 5.25
The spelled result in words is twenty-one quarters (or five and one quarter).How do we solve fractions step by step?
- Conversion a mixed number 1 1/2 to a improper fraction: 1 1/2 = 1 1/2 = 1 · 2 + 1/2 = 2 + 1/2 = 3/2
To find a new numerator:
a) Multiply the whole number 1 by the denominator 2. Whole number 1 equally 1 * 2/2 = 2/2
b) Add the answer from the previous step 2 to the numerator 1. New numerator is 2 + 1 = 3
c) Write a previous answer (new numerator 3) over the denominator 2.
One and one half is three halfs. - Conversion a mixed number 3 1/2 to a improper fraction: 3 1/2 = 3 1/2 = 3 · 2 + 1/2 = 6 + 1/2 = 7/2
To find a new numerator:
a) Multiply the whole number 3 by the denominator 2. Whole number 3 equally 3 * 2/2 = 6/2
b) Add the answer from the previous step 6 to the numerator 1. New numerator is 6 + 1 = 7
c) Write a previous answer (new numerator 7) over the denominator 2.
Three and one half is seven halfs. - Multiple: 3/2 * 7/2 = 3 · 7/2 · 2 = 21/4
Multiply both numerators and denominators. Result fraction keep to lowest possible denominator GCD(21, 4) = 1. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words - three halfs multiplied by seven halfs is twenty-one quarters.
Rules for expressions with fractions:
Fractions - use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) keep one space between the integer and
fraction and use a forward slash to input fractions i.e., 1 2/3 . An example of a negative mixed fraction: -5 1/2.
Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal point . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order of operations are:
PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
BODMAS - Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.
GEMDAS - Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.
MDAS - Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.
Be careful; always do multiplication and division before addition and subtraction. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.
Fractions in word problems:
- The denominator
Find unknown denominator in fraction inequality: 6/5>41/_>8/7 - Collected 58291
Veronika collected 3/5 kg of paper, Alex collected 3/4 kg of paper, and Juraj collected 7/10 kilograms of paper. a) who collected the most and who collected the least? b) how many kg of paper did they collect together? (cut the result in the form of a mix - Stephan - cookies
Stephan is making cookies for the class. His recipe calls for 3 and 1/2 cups of flour. He has 7/8 a cup of wheat flour and 2 and 1/2 cups of white flour. Does Mr. Stephan have enough flour to make the cookies? - Indicated 32771
Did Sonia not like the ratio indicated on the jelly sugar; which picture is wrong and why? A) for 1000g of fruit, add 350g of sugar 3:1: super jelly sugar B) 3:1 for 1500 g of fruit, add 500 g of sugar: extra jelly sugar
- Measuring 36483
Dominik teaches his kitten to go to the cat toilet for litter. He needs to fill the toilet halfway, but he needs to know how many bales of litter to buy. Please advise him if you know that the toilet has a bottom measuring 0.43 m and 3.5 dm and is 11 cm d - The fuel
The car's fuel was ¾ full at the beginning of the week. At the end of the week, there was ⅛ of a tank left. a. Did the car use more or less than ½ of a fuel tank? How do you know? b. How much more or less than ½ of a tank did it use? Show your work using - Drill bit
Bill's 3/8-inch drill bit is missing and needed for a job. He can get by with drilling a smaller hole than 3/8-inch as long as it is as close to 3/8-inch as possible. Which of the following bits would be the best to use? A. 13/32 inch B. 23/64 inch C. 1/2
more math problems »
Last Modified: December 13, 2024