# Fraction calculator

This fraction calculator performs all fraction operations and evaluates expressions with fractions. It also shows detailed step-by-step information about the fraction calculation procedure. The calculator helps find value from multiple fraction operations with two, three, or more fractions and numbers in one expression.

## The result:

### 2 1/3 * 3 1/2 = 49/6 = 8 1/6 ≅ 8.1666667

The spelled result in words is forty-nine sixths (or eight and one sixth).### How do we solve fractions step by step?

- Conversion a mixed number 2 1/3 to a improper fraction: 2 1/3 = 2 1/3 = 2 · 3 + 1/3 = 6 + 1/3 = 7/3

To find a new numerator:

a) Multiply the whole number 2 by the denominator 3. Whole number 2 equally 2 * 3/3 = 6/3

b) Add the answer from the previous step 6 to the numerator 1. New numerator is 6 + 1 = 7

c) Write a previous answer (new numerator 7) over the denominator 3.

Two and one third is seven thirds. - Conversion a mixed number 3 1/2 to a improper fraction: 3 1/2 = 3 1/2 = 3 · 2 + 1/2 = 6 + 1/2 = 7/2

To find a new numerator:

a) Multiply the whole number 3 by the denominator 2. Whole number 3 equally 3 * 2/2 = 6/2

b) Add the answer from the previous step 6 to the numerator 1. New numerator is 6 + 1 = 7

c) Write a previous answer (new numerator 7) over the denominator 2.

Three and one half is seven halfs. - Multiple: 7/3 * 7/2 = 7 · 7/3 · 2 = 49/6

Multiply both numerators and denominators. Result fraction keep to lowest possible denominator GCD(49, 6) = 1. In the following intermediate step, it cannot further simplify the fraction result by canceling.

In other words - seven thirds multiplied by seven halfs is forty-nine sixths.

### Rules for expressions with fractions:

**Fractions**- use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter

**5/100**. If you use mixed numbers, leave a space between the whole and fraction parts.

**Mixed numerals**(mixed numbers or fractions) keep one space between the integer and

fraction and use a forward slash to input fractions i.e.,

**1 2/3**. An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e.,

**1/2 : 1/3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

### Math Symbols

Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|

+ | plus sign | addition | 1/2 + 1/3 |

- | minus sign | subtraction | 1 1/2 - 2/3 |

* | asterisk | multiplication | 2/3 * 3/4 |

× | times sign | multiplication | 2/3 × 5/6 |

: | division sign | division | 1/2 : 3 |

/ | division slash | division | 1/3 / 5 |

: | colon | complex fraction | 1/2 : 1/3 |

^ | caret | exponentiation / power | 1/4^3 |

() | parentheses | calculate expression inside first | -3/5 - (-1/4) |

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• reciprocal of a fraction: 1 : 3/4

• square of a fraction: 2/3^2

• cube of a fraction: 2/3^3

• exponentiation of a fraction: 1/2^4

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• multiplying a fraction by a whole number: 6 * 3/4

• square root of a fraction: sqrt(1/16)

• reducing or simplifying the fraction (simplification) : 4/22 - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5 ÷ 2/3

The calculator follows well-known rules for

**the order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

**MDAS**- Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.

Be careful; always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.

## Fractions in word problems:

- Collected 58291

Veronika collected 3/5 kg of paper, Alex collected 3/4 kg of paper, and Juraj collected 7/10 kilograms of paper. a) who collected the most and who collected the least? b) how many kg of paper did they collect together? (cut the result in the form of a mix - Stephan - cookies

Stephan is making cookies for the class. He has a recipe that calls for 3 and 1/2 cups of flour. He has 7/8 a cup of wheat flour and 2 and 1/2 cups white flour. Does Mr. Stephan have enough flour to make the cookies? - Ordered pairs

Given: Set T = {(1,2), (2,3), (3,4), (4,5), (5,5), (6,7), (6,6), (7,8), (8,9), (9,9), (9, 10), (11,12), (12,13), (13,14), (15,16), (16,16), (17,18), (18,19), (20,21)} Find the probability of having an ordered pair wherein the second element is greater tha - Indicated 32771

Did Sonia not like the ratio indicated on the jelly sugar; which picture is wrong and why? A) for 1000g of fruit, add 350g of sugar 3:1: super jelly sugar B) 3:1 for 1500 g of fruit, add 500 g of sugar: extra jelly sugar

- Measuring 36483

Dominik teaches his kitten to go to the cat toilet for litter. He needs to fill the toilet halfway, but he needs to know how many bales of litter to buy. Please advise him if you know that the toilet has a bottom measuring 0.43 m and 3.5 dm and is 11 cm d - The fuel

The car's fuel was ¾ full at the beginning of the week. At the end of the week, there was ⅛ of a tank left. a. Did the car use more or less than ½ of a fuel tank? How do you know? b. How much more or less than ½ of a tank did it use? Show your work using - Drill bit

Bill's 3/8 inch drill bit is missing and is needed for a job. He can get by with drilling a smaller hole than 3/8 inch as long as it is as close to 3/8 inch as possible. Which of the following bits would be the best to use? A. 13/32 inch B. 23/64 inch C. - What is similar fraction

Which of the following is the similar fraction of 9/10,3/5,1/4 - Right-angled 64614

Arrange the given shapes according to their area, in descending order: S - Square with perimeter = 16 cm O - A rectangle with side a = 3 cm and perimeter o = 16 cm T - A right-angled triangle with a hypotenuse of 4.125 cm and a hypotenuse of 8.125 cm

- Which 10

Which will have greater momentum between a ten-wheeler truck weighing 7,000 kg and a bus that weighs 5,000kg if the bus is moving at 15 m/s while the truck is moving at 10 m/s? - Four children

Father saved a certain amount of money in the bank. He divided this amount equally among his four children. One of the daughters donated 3/7 of the amount she received to her son and 4/9 of it to her daughter. What part of the total amount saved did the s - Ten fractions

Write ten fractions between 1/3 and 2/3 - Cody states

Cody states that 1/4 + ( - 6/8 ) = 1 whole, while Eddie says that it is - 1/2. Who is correct? Justify your answer and explain your thinking. - Three-quarters 47331

A cylindrical container is three-quarters full with six liters of water. We dip a cube-shaped body into the container, which sinks to the bottom. The length of the edge of the cube is 13 cm. Decide what happens to the sink after the cube is dipped.

more math problems »