# Fraction calculator

This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step informations.

## The result:

### (3/4) : (6/5) = 5/8 = 0.625

The spelled result in words is five eighths.### How do we solve fractions step by step?

- Divide: 3/4 : 6/5 = 3/4 · 5/6 = 3 · 5/4 · 6 = 15/24 = 3 · 5 /3 · 8 = 5/8

Dividing two fractions is the same as multiplying the first fraction by the reciprocal value of the second fraction. The first sub-step is to find the reciprocal (reverse the numerator and denominator, reciprocal of 6/5 is 5/6) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators. In the following intermediate step, cancel by a common factor of 3 gives 5/8.

In other words - three quarters divided by six fifths is five eighths.

### Rules for expressions with fractions:

**Fractions**- use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter

**5/100**. If you use mixed numbers, leave a space between the whole and fraction parts.

**Mixed numerals**(mixed numbers or fractions) keep one space between the integer and

fraction and use a forward slash to input fractions i.e.,

**1 2/3**. An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e.,

**1/2 : 1/3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

### Math Symbols

Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|

+ | plus sign | addition | 1/2 + 1/3 |

- | minus sign | subtraction | 1 1/2 - 2/3 |

* | asterisk | multiplication | 2/3 * 3/4 |

× | times sign | multiplication | 2/3 × 5/6 |

: | division sign | division | 1/2 : 3 |

/ | division slash | division | 1/3 / 5 |

: | colon | complex fraction | 1/2 : 1/3 |

^ | caret | exponentiation / power | 1/4^3 |

() | parentheses | calculate expression inside first | -3/5 - (-1/4) |

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• reciprocal of a fraction: 1 : 3/4

• square of a fraction: 2/3 ^ 2

• cube of a fraction: 2/3 ^ 3

• exponentiation of a fraction: 1/2 ^ 4

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• square root of a fraction: sqrt(1/16)

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5÷2/3

The calculator follows well-known rules for

**the order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

**MDAS**- Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.

Be careful; always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.

## Fractions in word problems:

- Divide mixed numbers

Divide the following fractions and reduce your answers to its simplest form if possible: 1. 2 3/4 ÷ 3 1/12 2. 3 2/3 ÷ 4 1/2 3. 5 3/7 ÷ 2 3/9 4. 6 2/3 ÷ 1 1/5 - Divide 42

Divide. Write your answer in the lowest terms as a proper or improper fraction. (8/25)÷(-4/5) - Pieces of wood

How many pieces of wood can each student have if there are 12 pieces and each student needs 1/4 of a piece? - Soup 4

Cornell makes 11/12 of a gallon of soup. He eats equal portions of soup for 5 days, with no soup remaining after the 5th day. How many gallons of soup did Cornell eat each day?

- David 4

David made 4/3 of a quart of fruit juice. Each mug he has holds 1/3 of a quart. How many mugs will David be able to fill? - Jaenette

Janette served 3/4 of a pizza to her friends. Each visitor was given 1/4 of the pizza. How many visitors shared the pizza? - Why is

Why is three divided by one-fifth different from one-fifth divided by three?

more math problems »

Last Modified: June 4, 2024