Fraction calculator
This calculator adds two fractions. First, all fractions are converted to a common denominator when fractions have different denominators. Find the Least Common Denominator (LCD) or multiply all denominators to find a common denominator. When all denominators are the same, subtract the numerators and place the result over the common denominator. Then, simplify the result to the lowest terms or a mixed number.
The result:
3/5 + 2/3 = 19/15 = 1 4/15 ≅ 1.2666667
The spelled result in words is nineteen fifteenths (or one and four fifteenths).How do we solve fractions step by step?
- Add: 3/5 + 2/3 = 3 · 3/5 · 3 + 2 · 5/3 · 5 = 9/15 + 10/15 = 9 + 10/15 = 19/15
It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(5, 3) = 15. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 5 × 3 = 15. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words - three fifths plus two thirds is nineteen fifteenths.
Rules for expressions with fractions:
Fractions - use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) keep one space between the integer and
fraction and use a forward slash to input fractions i.e., 1 2/3 . An example of a negative mixed fraction: -5 1/2.
Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal point . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order of operations are:
PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
BODMAS - Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.
GEMDAS - Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.
MDAS - Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.
Be careful; always do multiplication and division before addition and subtraction. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.
Fractions in word problems:
- Using money
Out of 575,000.00 given to a school, an amount of 25,000.00 was used. What fraction of the total amount was used? - Someone
Someone ate 1/10 of a cake, leaving only 9/10. If you eat 2/3 of the cake left, how much of a whole cake will you have eaten? - A less than B
What is 3/5 less than 11/12? (Answer should be in proper or improper only: Example 1/2, -1/2, 3/2, and -3/2) - Fraction 77774
Express the value of the fraction 25/12 as a decimal number.
- Pupils 13
If ⅜ of the pupils in year 9 say, their favorite color is red. There are 112 pupils in year 9. How many students said red is their favorite color? - A baker 3
A baker made three cakes which were cut into eighths, ready for individual sale. A customer bought three slices or ⅜ of one of the eight cakes. How many slices were left for sale? - Probability RGB
The bag has six red, five green, eight blue, and 11 yellow balls. What is the probability that we will pull out a green ball?
more math problems »
Last Modified: October 9, 2024