Fraction calculator
This fractions calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step informations.
The result:
4 1/3 = 13/3 = 4 1/3 ≅ 4.3333333
The spelled result in words is thirteen thirds (or four and one third).How do we solve fractions step by step?
- Conversion a mixed number 4 1/3 to a improper fraction: 4 1/3 = 4 1/3 = 4 · 3 + 1/3 = 12 + 1/3 = 13/3
To find a new numerator:
a) Multiply the whole number 4 by the denominator 3. Whole number 4 equally 4 * 3/3 = 12/3
b) Add the answer from the previous step 12 to the numerator 1. New numerator is 12 + 1 = 13
c) Write a previous answer (new numerator 13) over the denominator 3.
Four and one third is thirteen thirds.
Rules for expressions with fractions:
Fractions - use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) keep one space between the integer and
fraction and use a forward slash to input fractions i.e., 1 2/3 . An example of a negative mixed fraction: -5 1/2.
Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal point . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order of operations are:
PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
BODMAS - Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.
GEMDAS - Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.
MDAS - Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.
Be careful; always do multiplication and division before addition and subtraction. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.
Fractions in word problems:
- Identify improper fraction
How do you identify improper fractions? Which is improper: A) 3/4 B) 32/15 C) 3/9 D) 2 2/11 - The fuel
The car's fuel was ¾ full at the beginning of the week. At the end of the week, there was ⅛ of a tank left. a. Did the car use more or less than ½ of a fuel tank? How do you know? b. How much more or less than ½ of a tank did it use? Show your work using - Dividends
The three friends divided the win by the invested money. Karlos got three-eighths, John 320 permille, and the rest got Martin. Who got the most and which the least? - For each
For each pair of expressions, circle the greater product without finding the product. (write 1=left expression, 2=right expression) a. 3/4 x 2/3 and 3/4 x 1/2 b. 2/3 x 3 1/4 and 4/3 x 3 1/4 c. 3/8 x 3/8 and 3/8 x 1/2
- Buing
Brother got to buy 240 CZK and could buy for 1/8 what he wanted. Could he pay the rest of the purchase for 200 CZK? - Compare fractions
Find which is the larger of the two fractions: 11/32, 7/24 by expressing the numbers as: a) fractions with the same denominator; b) decimals. - Compare three fractions
Which of the three rational numbers is the largest? 1/7, 6/17, 4/17
more math problems »
Last Modified: October 9, 2024