Line slope calculator 5x+3y=40


Enter coordinates of two different points:

Straight line given by points A[2; 10] and B[5; 5]

Calculation:

Slope-intercept form of line: y = -1.6667x+13.3333

Canonical form of the line equation: 5x+3y-40 = 0

Parametric form of the line equation:
x = 3t+2
y = -5t+10      ; t ∈ R

Slope: m = -1.6667

Slope angle of line: φ = -59°2'10″ = -1.0304 rad

X intercept: x0 = 8

Y intercept: y0 = q = 13.3333

Distance line from the origin: d0 = 6.8599

The length of the segment AB: |AB| = 5.831

Vector: AB = (3; -5)

Normal vector: n = (5; 3)

Midpoint of the segment AB: M = [3.5; 7.5]

Perpendicular Bisector equation: 3x-5y+27 = 0


Vector OA = (2; 10) ;   |OA| = 10.198
Vector OB = (5; 5) ;   |OB| = 7.0711
Scalar product OA .OB = 60
Angle ∠ AOB = 33°41'24″ = 0.588 rad