# Mixed number calculator

This calculator performs basic and advanced operations with mixed numbers, fractions, integers, and decimals. Mixed numbers are also called mixed fractions. A mixed number is a whole number and a proper fraction combined, i.e. one and three-quarters. The calculator evaluates the expression or solves the equation with step-by-step calculation progress information. Solve problems with two or more mixed numbers fractions in one expression.

## The result:

### 1/4 + 2/3 = 11/12 ≅ 0.9166667

The spelled result in words is eleven twelfths.### Calculation steps

- Add: 1/4 + 2/3 = 1 · 3/4 · 3 + 2 · 4/3 · 4 = 3/12 + 8/12 = 3 + 8/12 = 11/12

It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(4, 3) = 12. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 4 × 3 = 12. In the following intermediate step, it cannot further simplify the fraction result by canceling.

In other words - one quarter plus two thirds is eleven twelfths.

## What is a mixed number?

A mixed number is an integer and fraction $acb $ whose value equals the sum of that integer and fraction. For example, we write two and four-fifths as $254 $. Its value is $254 =2+54 =510 +54 =514 $. The mixed number is the exception - the missing operand between a whole number and a fraction is not multiplication but an addition: $254 =2⋅54 $. A negative mixed number - the minus sign also applies to the fractional $−254 =−(254 )=−(2+54 )=−514 $. A mixed number is sometimes called a mixed fraction. Usually, a mixed number contains a natural number and a proper fraction, and its value is an improper fraction, that is, one where the numerator is greater than the denominator.## How do I imagine a mixed number?

We can imagine mixed numbers in the example of cakes. We have three cakes, and we have divided each into five parts. We thus obtained 3 * 5 = 15 pieces of cake. One piece when we ate, there were 14 pieces left, which is $254 $ of cake. When we eat two pieces, $253 $ of the cake remains.See practise with mixed numbers »