# Apples in baskets

Determine how many apples are in baskets when in the first basket are 4 apples, and in any other is 29 apples more than the previous, and we have eight baskets.

**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 0 comments:**

**Be the first to comment!**

#### To solve this example are needed these knowledge from mathematics:

## Next similar examples:

- Students

In the front row sitting three students and in every other row 11 students more than the previous row. Determine how many students are in the room when the room is 9 lines, and determine how many students are in the seventh row. - Consecutive numbers

Sum of ten consecutive numbers is 105. Determine these numbers (write first and last). - AP - simple

Determine the first nine elements of sequence if a10 = -1 and d = 4 - AS sequence

In an arithmetic sequence is given the difference d = -3 and a_{71}= 455. a) Determine the value of a_{62}b) Determine the sum of 71 members. - Seats

Seats in the sport hall are organized so that each subsequent row has five more seats. First has 10 seats. How many seats are: a) in the eighth row b) in the eighteenth row - Saving per cents

The first day I save 1 cent and every next day cent more. How many I saved per year (365 days)? - Trees

A certain species of tree grows an average of 0.5 cm per week. Write an equation for the sequence that represents the weekly height of this tree in centimeters if the measurements begin when the tree is 200 centimeters tall. - Sequence 3

Write the first 5 members of an arithmetic sequence: a_{4}=-35, a_{11}=-105. - Sequence

Write the first 6 members of these sequence: a_{1}= 5 a_{2}= 7 a_{n+2}= a_{n+1}+2 a_{n} - Sum of members

What is the sum of the first two members of the aritmetic progression if d = -4.3 and a3 = 7.5? - Sequence

Write the first 7 members of an arithmetic sequence: a_{1}=-3, d=6. - Sequence 2

Write the first 5 members of an arithmetic sequence a_{11}=-14, d=-1 - 6 terms

Find the first six terms of the sequence. a1 = 7, an = an-1 + 6 - Theorem prove

We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started? - Sequence

Between numbers 1 and 53 insert n members of the arithmetic sequence that its sum is 702. - Series

Your task is express the sum of the following arithmetic series for n = 14: S(n) = 11 + 13 + 15 + 17 + ... + 2n+9 + 2n+11 - Nineteenth member

Find the nineteenth member of the arithmetic sequence: a1=33 d=5 find a19