# Scalene triangle

Solve the triangle:

A = 50°, b = 13, c = 6

A = 50°, b = 13, c = 6

### Correct answer:

Tips to related online calculators

Do you want to convert length units?

Cosine rule uses trigonometric SAS triangle calculator.

See also our trigonometric triangle calculator.

Cosine rule uses trigonometric SAS triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

## Related math problems and questions:

- Find the area

Find the area of the triangle with the given measurements. Round the solution to the nearest hundredth if necessary. A = 50°, b = 30 ft, c = 14 ft - Two boats

Two boats are located from a height of 150m above the surface of the lake at depth angles of 57° and 39°. Find the distance of both boats if the sighting device and both ships are in a plane perpendicular to the surface of the lake. - Two triangles SSA

Two triangles can be formed with the given information. Use the Law of Sines to solve the triangles. A = 59°, a = 13, b = 14 - Inner angles

The inner angles of the triangle are 30°, 45° and 105° and its longest side is 10 cm. Calculate the length of the shortest side, write the result in cm up to two decimal places. - Triangle SAS

Calculate the triangle area and perimeter, if the two sides are 51 cm and 110 cm long and angle them clamped is 130 °. - Diagonals

Calculate the length of the rhombus's diagonals if its side is long 5 and one of its internal angles is 80°. - Altitude angles

Cities A, B, C lie in one elevation plane. C is 50 km east of B, B is north of A. C is deviated by 50° from A. The plane flies around places A, B, C at the same altitude. When the aircraft is flying around B, its altitude angle to A is 12°. Find the altit - Triangle's centroid

In the triangle ABC the given lengths of its medians tc = 9, ta = 6. Let T be the intersection of the medians (triangle's centroid) and point is S the center of the side BC. The magnitude of the CTS angle is 60°. Calculate the length of the BC side to 2 d - Building

How high is the building that throws horizontal shadow 95.4 m long at angle 50°? - Two groves

Two groves A, B are separated by a forest, both are visible from the hunting grove C, which is connected to both by direct roads. What will be the length of the projected road from A to B, if AC = 5004 m, BC = 2600 m and angle ABC = 53° 45 ’? - The pond

We can see the pond at an angle 65°37'. Its end points are 155 m and 177 m away from the observer. What is the width of the pond? - Resultant force

Calculate mathematically and graphically the resultant of three forces with a common center if: F1 = 50 kN α1 = 30° F2 = 40 kN α2 = 45° F3 = 40 kN α3 = 25° - Mast shadow

Mast has 13 m long shadow on a slope rising from the mast foot in the direction of the shadow angle at angle 15°. Determine the height of the mast, if the sun above the horizon is at angle 33°. Use the law of sines. - Triangle from median

Calculate the perimeter, content, and magnitudes of the triangle ABC's remaining angles, given: a = 8.4; β = 105° 35 '; and median ta = 12.5. - Side c

In △ABC a=2, b=4 and ∠C=100°. Calculate length of the side c. - Triangles

Find out whether given sizes of the angles can be interior angles of a triangle: a) 23°10',84°30',72°20' b) 90°,41°33',48°37' c) 14°51',90°,75°49' d) 58°58',59°59',60°3' - Elevation angles

From the endpoints of the base 240 m long and inclined at an angle of 18° 15 ', the top of the mountain can be seen at elevation angles of 43° and 51°. How high is the mountain?